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From Poisson to population process Cohort effect

Aim of this talk

I Construction: from Poisson to population process

I Example 1: ”Cohort effect” in insurance
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From Poisson to population process Cohort effect

Plan

1 From Poisson to population process

2 Cohort effect
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From Poisson to population process Cohort effect

Microscopic models

Microscopic models in many fields:

I Agent-based models in economics (Orcutt, 1957)

I Microsimulation models of government bodies (Ex : INSEE,

model ”DESTINIE”)

I Individual-Based models in ecology (mathematical framework)

Modelling a population with birth, death & mutation at birth

Population structured by traits (i.e. individual characteristics)

(Fournier-Méléard 2004, Champagnat-Ferrière-Méléard 2006)

Extension to age-structured populations (Tran 2006,

Ferrière-Tran 2009)

I First formulation and tests for human populations: Bensusan

Phd thesis (2010)
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From Poisson to population process Cohort effect

Marked Poisson point process

I Consider T̄1 < T̄2 < ... < T̄n < ... the ordered times of jump
of a Poisson process N̄ with parameter λ̄.

That is, (T̄n+1 − T̄n) are iid ∼ Exp(λ̄).

I Then ”mark” each time of jump T̄n with an independent r.v.

Yn drawn on a space E with a probability density µ̄(dy), the

sequence (Yn) being independent of the (T̄n).

I Such process is called Marked Poisson point process on

R+ × E with intensity measure q(ds, dy) = λ̄dsµ̄(dy).
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From Poisson to population process Cohort effect

The associated random measure

I It can be represented as a random point measure on R+ × E ,

say

Q(ds, dy) =
∑
n≥1

δ(T̄n,Yn)(ds, dy).

I Note that the original Poisson process can be recovered by

N̄t =
∑
n≥1

1T̄n≤t =
∑
n≥1

1T̄n≤t1Yn∈E =

∫ t

0

∫
E
Q(ds, dy).
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From Poisson to population process Cohort effect

Martingale property

I Denote (Gt) the filtration generated by Q. The following

martingale property holds: for each bounded f ,

〈Q, f 〉t − 〈q, f 〉t is a (Gt)−martingale where we denote

〈Q, f 〉t =

∫ t

0

∫
E
f (s, y)Q(ds, dy) =

∑
n≥0

f (Tn,Yn). (1)

I The same property holds if f (s, y) is (Gt)−predictable,

provided that E[〈q, |f | 〉] < +∞.
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From Poisson to population process Cohort effect

Powerful representation/simulation tool

I Consider a non-homogenous Poisson process with
(deterministic) intensity λt

that is a counting process with the property that Nt −
∫ t

0
λsds

is a martingale.

I How to represent this process ?

I λt
λ̄
N̄t is a process with the right intensity, but not counting

anymore...
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From Poisson to population process Cohort effect

Powerful representation/simulation tool

I Assume that λs ≤ λ̄.

I The key idea is to provide additional information:

consider a marked Poisson point process with iid marks Θn

uniformly distributed in [0, 1] : Q(ds,dθ) has intensity

measure q(ds, dθ) = λ̄dsdθ on R+ × [0, 1].

I λsds =
∫

[0,1] 1θ≤λs/λ̄λ̄dθ ⇒ preserve counting

Nt :=
∑
n≥1

1T̄n≤t1Θn≤λT̄n/λ̄
=

∫ t

0

∫
[0,1]

1θ≤λs/λ̄Q(ds,dθ).

⇒ N is a counting process with the desired compensator

(martingale property) [Same result if (λt) is (Gt)-predictable]
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Non homogenous process simulation

Simulation by Thinning of a counting process with rate λt ,

assuming that λt ≤ λ
I Let (T̄n) the jump times of a Poisson process Nt with rate λ:

T̄n+1 − T̄n ∼ Exp
(
λ̄
)

I Recursively, at time T̄n pick a Bernouilli independent r.v. Un

s.t. P(Un = 1) = λT̄n
/λ.

I Then Nt := cardinal{k : Uk = 1, T̄k ≤ t} is a counting

process with rate λt

I (T̄n) are interpreted as candidate times for the system

I The thinning method makes easier the simulation of counting

processes with complex rates
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From Poisson to population process Cohort effect

Unbounded intensities

I How do we manage the representation if the predictable

process λt is not bounded ?

I this requires that the space of marks θ is R+ embedded with

Lebesgue measure

I the Poisson point measure Q(ds,dy) with intensity measure

q(ds,dy) = dsµ(dy) on R+ × E , with µ (only) sigma-finite,

is defined as the random measure taking values in

N ∪ {+∞}verifying
(i) for all non-overlapping measurable sets B1, ...,Bk of

Ē = R+ × E , r.v. Q(B1), ...,Q(Bk) are independent ,

(ii) for all measurable set B ⊂ Ē such that q(B) < +∞,

Q(B) ∼ Poisson (q(B)) .

(iii) Q({0} × E ) = 0 (this ensures no jump at time 0)
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Martingale property

I The martingale property still holds

I This allows to construct a counting process with

Gt-predictable intensity λt such that
∫ t

0 λsds < +∞ a.s..

Nt :=
∑
n≥1

1Sn≤t1Sn≤λSn =

∫ t

0

∫
R+

1θ≤λsQ(ds,dθ). (2)

⇒ N is a counting process s.t. Nt −
∫ t

0 λsds is a (Gt)−local

martingale
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The pure death process

I Consider a death process starting with Z0 individuals

I Each individual has death rate d̄ (its lifetime τ ∼ Exp(d̄)).

I The Z0 individuals are independent

⇒ First time of death ∼ Exp(d̄Z0)

⇒ Intensity at time t: λt := d̄Zt−

I The pure death process is defined as the solution to the

stochastic differential equation

Zt = Z0 −
∫ t

0

∫
R+

1θ≤d̄Zs−
Q(ds, dθ).

[Existence and uniqueness in the general case]
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From Poisson to population process Cohort effect

Birth-death process

I Pure birth process defined as the solution to

Zt = Z0 +

∫ t

0

∫
R+

1θ≤b̄Zs−
Q(ds,dθ).

I Birth-death process defined as the solution to

Zt = N0 +

∫ t

0

∫
R+

(
1θ≤b̄Zs−

− 1b̄Zs−<θ≤(b̄+d̄)Zs−

)
Q(ds, dθ).

I Dynamics of the birth-death process:

dZt = Z (dt) =

∫
R+

(
1θ≤b̄Zt−

− 1b̄Zt−<θ≤(b̄+d̄)Zt−

)
Q(dt,dθ),

⇒ Z (dt) is a signed point measure on R+.
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Pure birth process with age

I Add an age to each individual: if born at time t0 the

individual age t1 − t0 at time t1

I Consider a measure on R+ keeping track of all ages in the

population: Zt(da) =
∑Lt

i=1 δAi (Zt)(da) where Lt = 〈Zt , 1〉
I The (measure-valued) birth process (Zt(da)) is defined as the

solution to the following equation:

Zt(da) = Z t
0 (da) +

∫ t

0

∫
R+

δt−s(da)1θ≤b̄〈Zs−,1〉Q(ds, dθ).

For any continuous and bounded function f (a), one has

〈Zt , f 〉 = 〈Z t
0 , f 〉+

∫ t

0

∫
R+

f (t − s)1θ≤b̄〈Zs−,1〉Q(ds,dθ).
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From Poisson to population process Cohort effect

Birth process with age dependent birth rate

I Each individual with age a has a birth rate b(a) such that

b(a) ≤ b̄.

I Intensity λt :=
∑〈Zt−,1〉

i=1 b(Ai (Zt−)) = 〈Zt−, b〉.
I The process is the solution to the equation

Zt(da) = Z t
0 (da) +

∫ t

0

∫
R+

δt−s(da)1θ≤〈Zs−,b〉Q(ds, dθ).
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Equivalent formulation

I Specific linear form: λt =
∑〈Zt−,1〉

i=1 b(Ai (Zt−))

I let Q be a PPM with intensity measure

q(ds, di ,dθ) = dsn(di)dθ on R+ × N∗ × R+, where n is the

counting measure on N∗, that is for any A ⊂ N∗, n(A) is the

number of elements in A.

I Then the previous birth process with age can also be defined

as the solution of the equation

Zt(da) = Z t
0 (da)

+

∫ t

0

∫
N∗×R+

δt−s(da)1i≤〈Zs−,1〉1θ≤b(Ai (Zs−))Q(ds, di ,dθ).
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From Poisson to population process Cohort effect

Including characteristics

I Construction of a random point measure Γ(ds, dy) with

general intensity measure γ(ds,dy)

I Assume that it admits a density: γ(ds,dy) = γ(s, y)ds µ(dy)

I Let Q(ds,dθ,dx ′) be a Poisson point measure on

R+ × R+ ×X with intensity measure dsdθµ(dy) and natural

filtration (Gt)
I Assume that γ(s, y) is (Gt)-predictable and∫ t

0

∫
E γ(s, y)dsµ(dy) < +∞ a.s.

I Then

Γ(ds,dy) =

∫
R+

10≤θ≤γ(s,y)Q(ds,dy , dθ)

has intensity measure γ(s, y).
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From Poisson to population process Cohort effect

General model: birth-death-swap

I Let (Yt) be a cadlag stochastic process (”random

environment”), independent of Q

Demographic rates: an individual of characteristics xt ∈ X ⊂ Rd

and age at ∈ [0, ā] at time t,

I Dies at rate d (xt , at , t,Y )

P(Tdeath ≥ t | Y ) = exp
(
−
∫ t

0
d(xs , as , s,Y )ds

)
(born at 0)

I Gives birth at rate b (xt , at , t,Y )

and the new individual has traits x ′ ∼ kb(xt , at , t, x
′)γ(dx ′)

I Evolves during life (swap) at rate e (xt , at , t,Y ) γ(dx ′)

from traits xt to x ′ ∼ ke(xt , at , t, x
′)γ(dx ′)
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From Poisson to population process Cohort effect

Simulation algorithm

I Assumption of bounded demographic rates with b̄, d̄ and ē

⇒ use of the Thinning method (∼ Inspection times)

1 Start with N indiv. at T , generate τ ∼ Exp
(
N(d̄ + b̄ + ē)

)
The bigger the population, the more it is inspected

2 Select an individual (x I , aI ) uniformly and compute:

p1 = b(x I ,aI ,T+τ,Y )

b̄+d̄+ē
, p2 = d(x I ,aI ,T+τ,Y )

b̄+d̄+ē
, p3 = e(x I ,aI ,T+τ,Y )

b̄+d̄+ē

Only one individual is checked (not exhaustive)

3 Determine the nature of inspection at time T + τ

I Birth: add a new individual with probability p1

I Death: remove (x I , aI ) with probability p2

I Evolution: change traits of (x I , aI ) with probability p3

I No event with probability 1− p1 − p2 − p3
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From Poisson to population process Cohort effect

Simulation algorithm
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Plan

1 From Poisson to population process

2 Cohort effect
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From Poisson to population process Cohort effect

Cohort effect: framework

I The largest data sets: national basis (see e.g. Human

Mortality database), by age and gender

I Used for decision making for (public and private) pension

systems

I In particular: possible hedging with standard longevity

indices

I Ex: standard longevity bond

⇒ pays a coupon proportional to the number of survivors in a

predetermined population (ex: people born in 1960 in UK)

I Ex: standard longevity swap

⇒ the insurer exchanges a fixed nominal term structure

(expected survival of its portfolio) against the reference

survival index (ex: UK) payed by the investor
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From Poisson to population process Cohort effect

I Problem: the link between the mortality of the insurer’s

portfolio and that of the national population is not stable

(basis risk)

I The heterogeneity of the national reference population is not

taken into account ⇒ can be crucial to understand variations

of reference survival indicators

I Aim: show how heterogenous birth patterns can create

artificial mortality improvement for a reference population
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From Poisson to population process Cohort effect

Cohort effect, I

Cohort: group of individuals who have experienced the same event

during the same period. (ex : birth cohort of individuals born in

1930)

⇒ Individuals of the same cohort will have similar demographic

characteristics (”cohort effect”).
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From Poisson to population process Cohort effect

Cohort effect, II

(Cairns et al., 2009) [ra,t = (qa,t−1 − qa,t)/qa,t ]

Golden cohort: generations born between 1925 and 1945
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Figure 3: Improvement rates in mortality for England & Wales by calendar year
and age relative to mortality rates at the same age in the previous year. Red cells
imply that mortality is deteriorating; green small rates of improvement, and blue
and white strong rates of improvement. The black diagonal line follows the progress
of the 1930 cohort.

2.1.2 The cohort eÆect

Some of the models we employ incorporate what is commonly called the “cohort
eÆect”. The rationale for its incorporation lies in an analysis of the rates at which
mortality has been improving at diÆerent ages and in diÆerent years. Rates of
improvement are plotted in Figure 3 (see, also Willets, 2004, and Richards et al.,
2006). A black and white version of this graph can be found in the Appendix, Figure
38.

In line with previous authors (see, for example, Willets, 2004, Richards et al., 2006)
we can note the following points. In certain sections of the plot, we can detect
strong diagonals of similar colours. Most obviously, cohorts born around 1930 have
strong rates of improvement between ages 40 and 70 relative to, say, cohorts born
10 years earlier or 10 years later. The cohort born around 1950 seems to have worse
mortality than the immediately preceeding cohorts.

There are other ways to illustrate the cohort eÆect and these can be found in Ap-
pendix A.

28/36 Alexandre Boumezoued Microscopic model longevity



From Poisson to population process Cohort effect

Cohort effect, III (UK)

The Cohort Effect: Insights And Explanations, 2004, R. C. Willets

The Golden cohort has experienced more rapid improvements than

earlier and later generations. Some possible explanations:

I Impact of World War II on previous generations,

I Changes on smoking prevalence: tobacco consumption in next

generations,

I Impact of diet in early life,

I Post World War II welfare state,

I Patterns of birth rates
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Cohort effect, IV (UK)
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Cohort effect, V (UK)

”One possible consequence of rapidly changing birth rates is that

the ‘average’ child is likely to be different in periods where birth

rates are very different. For instance, if trends in fertility vary by

socio-economic class, the class mix of a population will change.”

The Cohort Effect: Insights And Explanations, 2004, R. C. Willets
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Simple toy model

I Reference death rate d̄(a) = A exp(Ba)

I Parameters A ∼ 0.0004 and B ∼ 0.073 estimated on French

national data for year 1925 to capture a proper order of

magnitude

I Group 1 : time independent death rate d1(a) = d̄(a) and

birth rate b1(a) = c1[20,40](a) (c=0.1)

I Group 2 : time independent death rate d2(a) = 2d̄(a) but

birth rate b2(a, t) = 4c1[20,40](a)1[0,t1]∪[t2,∞)(t)

I Constant death rates but reduction in overall fertility between

times t1 (=10) and t2 (=20)

I Aim: compute standard demographic indicators
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Aggregate fertility

I One trajectory with 10000 individuals (randomly) splitted

between groups. Estimation of aggregate fertility
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Life expectancy by year of birth

I ”Cohort effect” for aggregate life expectancy
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Figure : Observed fertility (left) and estimated life expectancy by year of

birth (right)

I Death rates by specific group remain the same

I But reduction in fertility for ”lower class” during 10-20

modifies the generations composition

⇒ ”upper class” is more represented among those born

between 10 and 20
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[2] Fournier, N., Méléard, S. (2004) A microscopic probabilistic description of a

locally regulated population and macroscopic approximations. Annals of

applied probability 14(4) 1880-1919
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