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Univariate aggregate claim (Ao Marslle oy gy
amounts.

Consider a non-life insurance portfolio.
» Over a given time period,

— The number of claims is modeled through a counting random
variable N,

— The claim sizes are a sequence of non-negative, i.i.d. random
variables (U;);cy-

» The aggregate claim amounts is defined as

N
X=>"U,
i=1

— {U}ien are independent of N.

X is governed by a compound distribution (P, Py).
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Multivariate aggregate claim (Aix Morseile Y gy o
amounts.

und

Consider n non-life insurance portfolios,
» The risks are jointly modeled via

N.
Xi 24 Uy m o[ Vi
o= > |
N =1
Xn Zj:1 Un/' ! Vn/‘
— N=(Ni,...,N,) is a vector of counting random variables,
— (Usj)jen, - - -, (Un)jen are independent sequences of non-negative
and i.i.d. random variables,
— {Vitien = {(V4i, ..., Vai)}ien is a sequence of i.i.d. random
vectors,

< M is a counting random variable,
— {Vi}tien, N, M and (Ut )jen; - - -, (Un)jen are independent.
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Ruin Theory: A more dynamic (s msrscile my g o,

universite

vision of risk management.

Fund

Consider a non-life insurance portfolio.
» Let t > 0 denotes the time,

— The number of claim until time ¢ is a counting process {N:}>o,
— The claim sizes are a sequence of i.i.d., non-negative random
variables (U)ien.

» The liability of the insurer at time t are
Ny

X[ = Z Ui7
i=1

< (U)ien is independent of {N;}r>o.
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Ruin Theory: A more dynamic (Ao Morslle g g
vision of risk management.

» The financial reserve allocated to this portfolio, a.k.a. Risk
Reserve Process, is

Ny
R[:U+Ct—ZU/,

i=1

— u denotes the initial reserve,
— ¢ denotes the rate at which premiums are collected per unit of time.

» The Claim Surplus process is defined as

St:ufF:’t.
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Ruin theory: (A Marseile iy g wa
A graphical visualization.
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Numerical Methods:
A guided tour.

(
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Oui

Panjer Fast Fourier
algorithm Transform

Arithmetizatio
of the claim sizes
distribution

Non

Fourier
transform
direct
inversion

Recursive
method

Laplace
transform
inversion
techniques

Polynomial
Approximations

Exponential
Moments
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EXECUTIVE SUMMARY.

Application of the polynomial approximation method to two problem.

1. Computation of the ultimate ruin probability in the compound
Poisson ruin model.

— {N;}+>0 is a Poisson process with intensity A.

2. Study of a bivariate aggregate claim amounts distribution with
reinsurance motivations.
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Aix-Marseille .
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Ruin probability definition

» Infinite time horizon ruin probability or ultimate ruin probability,
’lﬁ(U) =P (;IQI) R <0;Ry = U> .
» Finite time horizon ruin probability,
=P inf R iRy = .
Y(u, T) (tel[g,r] t < 0;Fo U>
» Infinite and finite time horizon non ruin probabilities,

opu) =1-9) ¢, T)=1-9¢(,T).
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Alternative definition for ruin (Ao Morselle g g v
probabilities.

» Time to ruin and Claims surplus process maximum,
w=inf{t>0: R <0} =inf{t >0:5 > u},
M=supS;, Mr= sup S;.
t>0 te[0,T]
» Infinite and finite time horizon ruin probabilities,

P(u) =P (ry < o0) =P (M > u),

YW, T)=P(ru < T)=P(Mr > u).
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(Aix Marseille

universite

The safety loading.

- ¥ Research Fund

The average amount of claims per unit of time is given by

%E(Xt) — \E(U).

» The safety loading 7, is defined as
c=(1+n)AE(U).
» Net Benefit Condition

n >0,

— Ifp < 0theny(u) =1,
— Ifn>0theny(u) < 1.

September, the B’d of 2015, Aarhus
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Ultimate ruin probability: (Ao Marslle oy gy _
Pollaczek-Khinchine formula.

In the frame of the compound Poisson ruin model,

N

Yu)=PM>uv) M2V,

i=1

» Nis governed by a geometric distribution G(p), where
p= ) < 1and

B(N = n) = (1 - p)p".

> (V))ien~ is a sequence of i.i.d. and non-negative random variable
having PDF,

~_ P(U>x)

fv(x) = TRU)

» (Vi)ien~ and N are independent.
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NOtatlonS (Al)ﬁ\wﬁrrs?lrlﬁle M ',‘IQ’S‘Q
Convolution product.

rch Fund

» Let U and V be two random variables with associated PDF f, et
fv,

fav(x) = /mu—yﬁwmma
= (fU * fv)(X)

— Convolution product of fy and fy.
» Let S=3"7, U, be the sum of n i.i.d. random variables,

6500 = [ [ [ ey,

f(*n )

— fl(f") referes to the n-fold convolution of fy with itself.
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Notations:

Laplace transform.

universite

(Aix Marseille

The Laplace transform of a random variable is defined as

Lu(s) = E (eV) = / 5y (X)dA(x),

Thus the Laplace transforms of sums of independent random
variables is given by

Luyyv(s)

Ls(s)

Eu(S) X Ev(S),

[Lu(s)"

September, the B’d of 2015, Aarhus
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Com pou nd geometric (Ai)ﬁ \M./ﬁir’/sf?'irltle M '." RAe§eAarchFuﬂd
distribution.

» The random variable M = Zf\; U; admits a compound
distribution,

dPu(x) = P(N = 0)dp(x) + dGuy(x),
where

+o0
am(x) = S_P(N=n)fi"(x)

n=1

_ :,i“ _p)p”//.../fv(x—y)fv(J/)d%
and

) P(M > u)

/:oo :22(1 _p)pn//"'/fV(X_y)fV(y)dde,
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Laplace transform of ruin (Ao Marslle oy gy
probabilities.

The Laplace transform of M is given by,

Lm(s) = GnlLv(s)]-

» Gy is the probability generating function of N,

—+o0

Gn(s) =E (s¥) => (1 - p)p¥s”
k=0
which implies that
Lu(s) = — P
Y 1—pLy(s)’

and finally
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The polynomial approximation: (Aix Morseile Y -
Univariate case

Let X be a random variable governed by Py, with PDF fx.
» v is a reference probability measure, with PDF f,.
— Py is absolutely continuous with respect to v,

dPx
G X).

» {Qx}ken is a system of orthogonal polynomials with respect to v,

fx.o(x) =

< Qk, Q >= /Qk(X)Q/(X)dI/(X) =du, k,leN.

The idea is to perform an orthogonal projection of fx ,, onto the
orthogonal basis {Qx }ken-
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The polynomial approximation: (Aix Morseile Y -y o
Univariate case

» Px is absolutely continuous with respect to v,
— Existency of %.

» The set of polynomials is a dense set of L?(v),
< {Qk}ken is an orthogonal system of L2(v).

If £x € [2(v), then
dPX Zakok , X € R,

where
ax = E[Qk(X)], Vk €N.

September, the B’d of 2015, Aarhus 18/47



The polynomial approximation: (Ao Morselle g g v
Univariate case.

» The PDF of the random variable X admits a polynomial
expansion,

f(x) = fx., (X),( Zakax)f X).

k=0

» Approximations follow from truncation of order K,

£ (x) = £ ,(x)f, Zakok ), (X).

Approximations of the cumulating distribution function or the survival
function are obtained through integration.

September, the B’d of 2015, Aarhus 19/47



Polynomial approximation of ruin (Ao Marslle oy gy _
probabilities.

M = Z,’L V; is governed by a probability measure
dPuy(x) = (1 — p)do(x) + dGu(x).
If 484 ¢ [2(v) then,

dG dG
Yxy=Y < TUM’ Qx> Qu(x).

dv
keN

The approximation of the ruin probability is derived by truncation and
integration,

K 400
=3 <0 [ e

k=0 u
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Choice of the reference (A Marselle gy gy ma
probability measure.

dGyy is a defective probability measure having support on R,

» The gamma distribution I'(m, r) has support on R, its PDF is
given by
x 1 efx/m
dV(X) = W
» The orthogonal polynomials associated to the gamma measure
are the generalized Laguerre polynomials.

dA(x)

The choice of the parameters m et r is really important.

September, the S’d of 2015, Aarhus 21/47



Satisfaction of the integrability (Ao Marslle oy gy _
condition.

Theorem
Let X be a continuous and non-negative random variable,

H1 There exists vx = inf{s > 0, Lx(Ss) = +o0}.
H2 Let a > 0, x — fx(x) is monotically decreasing for x > a.

Then, for x > a,

fx(x) < A(so)e™**, 0 < sp < yx.

In the case of ruin probabilities, H2 is checked, and
= inf{s > 0, Ly, (s) = +oo} is the unique solution of

Lv(s)=p

September, the B’d of 2015, Aarhus 22/47



Satisfaction of the integrability (s varscite py gy
condition.

The integrability condition may be rewritten as

dGM 2 oo 2 x/my1—r
/ )| dv(x) < +oo = / G(x)e/™x'~"dx < +oo.
v 0

Applying gu, for so < ym, leads to
/g’%’(x)ex/mx1_’dx < A(SO)/e—X(2So—lm)x1_rdx.

The integrability condition is satisfied if the parameters is setted as
follows

re (0,1], € (0,2vum) .

3=

September, the B’d of 2015, Aarhus 23/47



Study of the decay of {ak}ken: (A Marsele WY g o
First result.

The quadratic loss after of the polynomial approximation is given by

L(gm.u.9h,) = / [gm.0(X) — 985, (%)) dw(x)

400
> a.

k=K+1

= Direct link between the decreasing of {ax }ken and the accuracy
of the polynomial approximation.

Proposition

H1 x — gum..(x) is continuous and twice differentiable function
1 2
H2 gm.., g,(w?,/, gﬁﬂ’)y € L2(v)

ak:o(:(), k — 4o0.

September, the B’d of 2015, Aarhus 24/47



Study of the decay of {atken: (i Marselle py gea
Study of the generating function.

The defective PDF of M admits the polynomial representation
+oco
gm(x) = > aQ(x)f, (x).
k=0

Taking the Laplace transform leads to

Lou(s) = (1 1sm)rc (1 Sn;m) ’

where C(z2) = 3% akckz¥, and

<k+r—1)
Ckx = Kk .
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Study of the decay of {atken: (i Marselle py gea
Study of the generating function.

The generating function of the coefficients is expressed in term of the
Laplace transform via

C(z) = (1+2)"Lg, [muiz)] .

» The coefficients follow from differentiations and evaluations at 0,

a = ﬁ [c<k>(z)] .

NB: the choice of m et r alter the generating in order to make it
simpler.
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Study of the decay of {afken:  (wmaseile py g
(1, ) distributed claim sizes.

If Ui ~T(1,3), then

o)
L, (8) = ,
QM() 1+(1€p)s
and
pm(1+ 2)'="
o) = B £ 2)”
miz(m )
>m:%andr:1 )
z)=p.

» gy =p,and a, =0 for k > 1.
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Numerical illustrations: (Aix Morssile Y g _
[(«, B) distributed claim sizes.

» Intensity of the Poisson process: A =1,

» Claim sizes (2, 1) distributed,

» Premium rate: ¢ =5,

» Adjustment coefficient: vy = 2 (19 — \/ﬁ)

The ruin probability is given by
¥(u) = 0.461861e 0*417420 _ 0.0618615¢ 13820
Several parametrizations are tested with an order of truncation
K = 40.
» The accuracy is given in terms of relative error,

_ Yapprox(U) — ¢(U).
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Numerical illustrations:
[(«, B) distributed claim sizes.
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Numerical illustrations:

Aix-Marseille .
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[(«, B) distributed claim sizes.
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Numerical illustrations:

(AIX Marseﬂle

[(«, B) distributed claim sizes.
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Numerical illustrations: (Aix Morssile Y g _
U(a, B) distributed claim sizes.

v

Intensity of the Poisson process: A =1,
Claim sizes 1/(0,100) distributed,
Premium rate: ¢ = 80,

v

v

Adjustments coefficient: vy = 0.013,

v

v

Truncation order: K=40.

The ruin probability is not available in a closed form.

» The approximation using the direct Fourier transform inversion is
used as benchmark.
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Numerical illustrations:
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U(a, B) distributed claim sizes.
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Two insurers and one reinsurer: (Ao Morselle g g v
universite X .' Research Fund
Bivariate collective model.

Consider 2 non-life insurance portfolios associated to the same line of
business of two insurance company.

» The risks are modeled jointly via

Xi _ Z/Z:H Usj + i V1/'
X2 21:21 U2/ j=1 V2/

» N; and N, are assumed to be independent,
» Polynomial approximation of the joint PDF of (Xj, X2).
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Aix-Marseille .
( universite M .‘fé’s‘émm

A global reinsurance treaty

The reinsurer propose to insurer i a non proportional reinsurance
contract with priority b; and limit ¢;, for i € {1,2}.

The joint distribution of (X, X2) is useful.

» To compute the premium associated with this reinsurance treaty.
» To study the risk exposure of the reinsurer

Z=min[(Xi —bi), ,ci] +min [(Xz — bo), . 2],

where (.)+ denotes the positive part.
— Value-at-Risk of Z and solvability margins.
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The polynomial approximation: (Aix Morseile Y gy o
Bivariate case.

Let (Xi, X2) be a random vector Py, x,, admiting a PDF fx, x,.

» v is the reference probability measure, builded from the product
of two probability measures,

I/(X1 R Xg) = 1N (X1) X VQ(XQ),
f,,(X1 s X2) = fl,1 (X1) X f,,z(Xg).
» {Q}ken is an orthonormal polynomial system with respect to v;,
forie{1,2}.

» {Qx i}k jen is an orthonormal polynomial system with respect to
v, where

Q,i(x1,%2) = Q' (x1)Q*(x2), k,leN.
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The polynomial approximation: (Aix Morseile Y gy o
Bivariate case.

und

The polynomial approximation method extends naturally within a
two-dimensionnal context:
» Integrability condition.
» Exponential bound for the joint density if the bivariate Laplace
transforms exists for positive arguments.
» Link between the Laplace transform and the generating function
of the coefficients.
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Bivariate aggregate claim (Ao Marslte oy g e
amounts distribution.

h Fund

The probability distribution of the random vector
<X1> _ (Z]‘IUU)_’_E,W:(V”)

X Z/ “1 Uz j=1

- (w)(%)

Wa Yo |’

admits a bunch of singularities...
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Choice of the reference (Ao Marslle oy gy _
probability measure.

» The distribution of = = ,is given b
( We > ( > Uy ) S

dPw, w, (W1, w2) = fn,(0)fi,(0)d0,0 (w1, W2)
+ dGW1(W1) X dGWZ(Wg)
+ fN1 (O)dGWZ(Wg) X 50(W1)
+ fNZ(O)dGW1(W1) X (50(W2).
» Univariate polynomial approximations of Gy, fori =1, 2.

— Gamma probability distribution and generalized Laguerre
polynomials.
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Choice of the reference (Ao Morselle g g v
probability measure.

h Fund

M
Y,
» The probability distribution of
Probabily (%)X

Yy , IS given by
j Vaj

dPy, v, (y1,¥2) = Mm(0)d0.0(¥1, ¥2) +dGy, v,(¥1, y2)-

dGy, v, is defective probability distribution having support on RZ.
» The probability measure v is the product of two gamma measure.

<~ wv;is a(my, ;) probabilty measure, for i = 1, 2.
— {Q"}«xen is a generalized Laguerre polynomials sequence, for
i=1,2.
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Numerical illustrations: (Aix Morssile Y g _
Survival function of (Y3, Y2)

» M is governed by a negative binomial distribution N'B(1,3/4),
» (V4, Vo) admits a bivariate exponential distribution of Downton
type DBVE(p, ju1, p2),
— p=1,
— 1=z =1,
» The polynomial approximation is compared to Monte Carlo
approximations.
The parametrization
1 1

— M= ——— h=hr=1.
(=pps” 2~ (I—ppe” '~ °

my =

leads to ]

14+ 2z125(p? — p(1 = p)? — p)

C(z1,22) = ;

and therefore

k
ak = [p* — p(1 = p)® — p| G, k,I€N.
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Numerical illustrations: (Aix Morseile Y -
universite ¥ Research Fund
Survival function of (Y3, Y2)
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lllustrations numeériques: (Ao Marslle oy gy _
Distribution of (X1, X2)

» N; and N, are N'B(1,3/4) distributed,
{Uij}jen et {Usj}jen are i.i.d. random variables I'(1, 1)
distributed,

— PDF available in a closed form in the case of the geometric
compound distribution with exponential claim sizes.

v

v

Approximation of the survival function of (Xi, X2).

v

Priorities: ¢1 = ¢ = 1,
Limits: by = b, = 4,
Approximation of the survival function of

v

v

Z=min [(X; — b1),,c1] + min [(Xz — b2), , C2] .

v

The polynomial approximations are compared to Monte Carlo
approximations.
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Numerical illustrations: (Aixu Marseile py -y wo
Survival function of (X1, X2)
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Numerical lllustrations:
Cost of reinsurance
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0 2 4 6 4
] z H Monte Carlo approximation \ Polynomial approximation
0 0.90385 0.898808
2 0.73193 0.724774
4 0.44237 0.435013
6 0.24296 0.237576
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Conclusions et (A Marselle gy gy ma
Perspectives

» The polynomial approximation is an efficient numerical method:

< Approximation of the probability of ultimate ruin in the compound
Poisson ruin model,

— Approximation of probabilities associated to a bivariate aggregate
claim amounts distribution with interesting reinsurance application.

Perspectives
» Application of this method to other actuarial problem or related to
other fields of applied probability.
» Statistical application when data are available,

— The approximation formula can be turned into a
semi-parametrical estimator of the PDF.
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My supervisors
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Approximation method 1: (Ao Marslle oy gy _
Panjer’s algorithm.

Panjer’s family
N is governed by a counting distribution that belongs to Panjer’s
family if

fu(k+1) = (a + f) (k).

And its recursive algorithm
If U admits a discrete probability distribution then M = Z,’L U, too

and

) = 4 (fu(0)) | sik=0
) L (a+ %) fuli)fu(k —j) sik>1"
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Direct Fourier transform (Aixu Marscille Y g s
inversion.

Fourier transform defintion
Let x — g(x) be a real function, its Fourier transform is defined as

+oo |
Lg(is) = /0 e g(x)dx

Fourier transform inversion formula
If f:: |Lg(is)|ds < 400, and g is continuous and bounded then

+o0 .
a(x) = 217 / e " Ly(is)ds

—0o0
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Apppproximation method 2: (Aix Morssile Y g _

Direct Fourier trasform inversion.

Consider
e Uyp(u) Siu>0
g(u) = o) .
g(—u) Siu<O0
then
zeua +o0 )
v(w) = 2 [ cos(uym i (a+ )] dy.
and finally

. 2e“a (1 = ,
Du) = = h{Z%[£¢(a)]+Zcos(ukh)3?[£w(a+lkh)]}.

k=1

September, the B’d of 2015, Aarhus
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Approximation method 3: (Ao Marslle oy gy _
Exponential moments.

» Approximation of the cumulating distribution function through a
mixed binomial distribution.

» Y is a continuous random variable, with values in [0, 1] and
governed by Py.

— Mixing parameter

Lyl - ok
B = 3 [ ()70 -2 e
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Méthode d’approximation 3: (Ao Marslle oy gy _
Exponential moments

» The method is based on the following convergence result

1 L"yJ 1
/ ( > — 2)"kdPy(2) %/ 1,<,dPy(2), n— 400
0 0

The cumulating distribution function is aproximated by

0§15 () (o

k=0 j=k

» X is RT-valued random variable.

—cX

< Change of variable Y = e where 0 < c < 1,

Lne=°

=T RO en

k=0 j=k
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Comparison: (Ao arseile Y @pma,
Monte Carlo VS Polynomial

Example: Compound Poisson distribution [P(2), (3, 1)],
CPU Time

35

30

25

20

15

10

5

200000 500000 goooo0  Tumber of Replications

» Order of truncation: K=75 = 20 sec,
< 600 000 Monte Carlo simulations.
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Comparison:
Monte Carlo VS Polynomials
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Statistical application: (Aix Marselle gy gy
Definition of the estimator

h Fund

Let Xi,..., X, be a sample of size n.
» The polynomial approximation of the PDF is given by

£ (x) = £ ,(x)f, Z ak Qu(X)f, ().
» The approximation formula turns into a PDF estimator
) =15 ( Z 3K Q(X)F (x).

The statistical inference is a two-step procedure,
1. Parametrical estimation of the parameters of the reference
probability measure,
2. Nonparametric estimation of the coefficients of the polynomial
expansion.
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Statistical application: (Aix Marslle gy gy
Definition of the estimator

und

The coefficients of the polynomial are
an=E[Q(X)], keN.

Nonbisasedly estimated by
1 n
= EZok(x,-), k=1,...,K,

with associated variance denoted by of | = V(Z).
» The coefficients of the polynomial expansion are estimated by

a, = Wi Zx,
where w = (w4, ..., wg) is @ modulator.
— Allow an optimisation of the Integrated Mean Squared Error

(IMSE).
» We set K = nin what comes next.
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Statistical application: (Aix Marslle gy gy
IMSE

The Integrated Mean Squared Error is defined as

— — 2
IMSE(f},.fx.,) = E / [fxw(x)—fx,l,(x)} dx

n

“+00
S-wd+ > &

k=1 k=n-+1
n
=+ E WEJ,Z(’,,.
k=1

A modified version of the Integrated Mean Squared Error is optimized

n n
EOMI(f)Zyvf)r(l,y) - ZWI%UI%,H+Z(1 - Wk)zalz('
k=1 k=1
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Statistical application: (A Marselle gy gy ma
IMSE

The quantities &, et 0% , are unbiasedly estimated through
1 n
62 = X)) - ZJ?, k=1,...
Gk,n n(n_1);[ok( /) k] ) 1a , N,

a& =max (ZZ —55,.0), k=1,...,n.

The Integrated Mean Squared Error is estimated by

n o n o
IMSE (@:, f)’},V) = Y Wik, +> (1-w)’a.
pa k=1
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Statistical application: (A Marselle gy gy ma
Subset Selection Modulator

M sy denotes the Subset Selection class of modulator such that
w=(1,...,1,0,...,0).
» Computation of the IMSE Yw € Mgye.

Illustration: Estimation of the PDF of the Inverse Gaussian distribution
ZG(A, ). The expression of the PDF is given by

Ax=p)?

\/Xzse*W
()=4" v X>0
0, Sinon.

» Distribution of the hitting time at a given level of a brownian
motion with drift,

» Weset \=2,and u = 4.
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Statistical application: (Aix Morseile Y gy
Visualization of the data

Obs=10 Obs=100
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Statitistical application:
IMSE

Aix-Marseille .
( universite M .‘fé’s‘émm
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Statistical application: (A Marselle gy gy ma
Sample’s size=10
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Statistical application:

Sample’s size=100

Aix-Marseille .
( universite M .‘fé’s‘émm
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Statistical application:
Sample’s size=500
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Statistical application:
Sample’s size=1 000
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Statistical application: (A Marselle gy gy ma
Compound distribution

» Aggregate claim amounts sample: (Xi, ..., Xp),

» Claim frequency sample: (Ny, ..., Np),

» Claim amounts sample: (Ui, ..., Un,, ..., Unj+.. +N,)-
The size of the sample available for the aggregate claim amounts and
the claim frequencies may be small.

» More observations are available for the claim sizes.
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Statistical application: (A Marselle gy gy ma
Compound distribution

Full Parametric
» Adequacy statistical test to calibrate the model for claim sizes
and claim frequency,
» Statistical inference of the parameters,
» Approximation method.
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Statistical application: (A Marselle gy gy ma
Compound distribution

Full NonParametric

» Statistical inference of the parameters of the reference
dsitribution,
— Using which sample?
» The coefficient of the polynomial expansion are estimated using
(Xiy-. 0, Xn)-
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Statistical application: (A Marselle gy gy ma
Compound distribution

Semi-Parametric

» Parametric model for the claim frequency.
» Statistical inference for the claim frequency model,
— Weuse (Ny,...,Np).
» The coefficients of the polynomial expansion are estimated using
(Ut,...,Un,, ..., Un+. +n,), and the recurence relationship that
often exists between the moments of X, N, et U.
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