Polynomial approximations of probability density functions
Applications to insurance

P.O. Goffard

Axa France - Institut de Mathématiques de Marseille I2M
Aix-Marseille Université

Aarhus University seminar
Univariate aggregate claim amounts.

Consider a non-life insurance portfolio.

- Over a given time period,
 - The number of claims is modeled through a counting random variable N,
 - The claim sizes are a sequence of non-negative, i.i.d. random variables $(U_i)_{i \in \mathbb{N}}$.

- The aggregate claim amounts is defined as
 \[
 X = \sum_{i=1}^{N} U_i,
 \]
 \[
 \{U_i\}_{i \in \mathbb{N}} \text{ are independent of } N.
 \]
 \[
 X \text{ is governed by a compound distribution } (\mathbb{P}_N, \mathbb{P}_U).
 \]
Multivariate aggregate claim amounts.

Consider \(n \) non-life insurance portfolios,

- The risks are jointly modeled via

\[
\begin{pmatrix}
X_1 \\
\vdots \\
X_n
\end{pmatrix} = \begin{pmatrix}
\sum_{j=1}^{N_1} U_{1j} \\
\vdots \\
\sum_{j=1}^{N_n} U_{nj}
\end{pmatrix} + \sum_{j=1}^{M} \begin{pmatrix}
V_{1j} \\
\vdots \\
V_{nj}
\end{pmatrix},
\]

\[\leftrightarrow \quad \mathbf{N} = (N_1, \ldots, N_n) \text{ is a vector of counting random variables},\]
\[\leftrightarrow \quad (U_{1j})_{j \in \mathbb{N}}, \ldots, (U_{nj})_{j \in \mathbb{N}} \text{ are independent sequences of non-negative and i.i.d. random variables},\]
\[\leftrightarrow \quad \{V_i\}_{i \in \mathbb{N}} = \{(V_{1i}, \ldots, V_{ni})\}_{i \in \mathbb{N}} \text{ is a sequence of i.i.d. random vectors},\]
\[\leftrightarrow \quad M \text{ is a counting random variable},\]
\[\leftrightarrow \quad \{V_i\}_{i \in \mathbb{N}}, \mathbf{N}, M \text{ and } (U_{j1})_{j \in \mathbb{N}}, \ldots, (U_{jn})_{j \in \mathbb{N}} \text{ are independent}.\]
Ruin Theory: A more dynamic vision of risk management.

Consider a non-life insurance portfolio.

- Let \(t \geq 0 \) denotes the time,
 - The number of claim until time \(t \) is a counting process \(\{N_t\}_{t \geq 0} \),
 - The claim sizes are a sequence of i.i.d., non-negative random variables \((U_i)_{i \in \mathbb{N}} \).

- The liability of the insurer at time \(t \) are
 \[
 X_t = \sum_{i=1}^{N_t} U_i,
 \]
 - \((U_i)_{i \in \mathbb{N}} \) is independent of \(\{N_t\}_{t \geq 0} \).
Ruin Theory: A more dynamic vision of risk management.

The financial reserve allocated to this portfolio, a.k.a. *Risk Reserve Process*, is

\[R_t = u + ct - \sum_{i=1}^{N_t} U_i, \]

\(u \) denotes the initial reserve,
\(c \) denotes the rate at which premiums are collected per unit of time.

The *Claim Surplus process* is defined as

\[S_t = u - R_t. \]
Ruin theory:
A graphical visualization.
Numerical Methods: A guided tour.

- Oui: Arithmetization of the claim sizes distribution
 - Panjer algorithm
 - Recursive method
 - Fast Fourier Transform
 - Laplace transform inversion techniques
 - Fourier transform direct inversion
 - Polynomial Approximations
- Non: Exponential Moments
EXECUTIVE SUMMARY.

Application of the polynomial approximation method to two problem.

1. Computation of the ultimate ruin probability in the compound Poisson ruin model.
 \(\{N_t\}_{t \geq 0} \) is a Poisson process with intensity \(\lambda \).

2. Study of a bivariate aggregate claim amounts distribution with reinsurance motivations.
Ruin probability definition

- Infinite time horizon ruin probability or ultimate ruin probability,
 \[\psi(u) = \mathbb{P}\left(\inf_{t \geq 0} R_t < 0; R_0 = u \right). \]

- Finite time horizon ruin probability,
 \[\psi(u, T) = \mathbb{P}\left(\inf_{t \in [0, T]} R_t < 0; R_0 = u \right). \]

- Infinite and finite time horizon non ruin probabilities,
 \[\phi(u) = 1 - \psi(u) \quad \phi(u, T) = 1 - \phi(u, T). \]
Alternative definition for ruin probabilities.

- Time to ruin and *Claims surplus process* maximum,

\[
\tau_u = \inf \{ t \geq 0 : R_t < 0 \} = \inf \{ t \geq 0 : S_t > u \},
\]

\[
M = \sup_{t \geq 0} S_t, \quad M_T = \sup_{t \in [0,T]} S_t.
\]

- Infinite and finite time horizon ruin probabilities,

\[
\psi(u) = \mathbb{P}(\tau_u < \infty) = \mathbb{P}(M > u),
\]

\[
\psi(u, T) = \mathbb{P}(\tau_u < T) = \mathbb{P}(M_T > u).
\]
The safety loading.

The average amount of claims per unit of time is given by

$$\frac{1}{t} \mathbb{E}(X_t) = \lambda \mathbb{E}(U).$$

- The safety loading η, is defined as

$$c = (1 + \eta) \lambda \mathbb{E}(U).$$

- **Net Benefit Condition**

 $$\eta > 0,$$

 $$\leftrightarrow$$ If $\eta < 0$ then $\psi(u) = 1$,

 $$\leftrightarrow$$ If $\eta > 0$ then $\psi(u) < 1$.
Ultimate ruin probability: Pollaczek-Khinchine formula.

In the frame of the compound Poisson ruin model,

$$
\psi(u) = \mathbb{P}(M > u) \quad M \overset{D}{=} \sum_{i=1}^{N} V_i,
$$

- N is governed by a geometric distribution $G(p)$, where

 $$
p = \frac{\lambda \mathbb{E}(U)}{c} < 1
 $$

 and

 $$
 \mathbb{P}(N = n) = (1 - p)p^n.
 $$

- $(V_i)_{i \in \mathbb{N}^*}$ is a sequence of i.i.d. and non-negative random variable having PDF,

 $$
f_V(x) = \frac{\mathbb{P}(U > x)}{\mathbb{E}(U)}.
 $$

- $(V_i)_{i \in \mathbb{N}^*}$ and N are independent.
Notations:

Convolution product.

Let \(U \) and \(V \) be two random variables with associated PDF \(f_U \) et \(f_V \),

\[
f_{U+V}(x) = \int f_U(x-y)f_V(y)dy,
\]

\[
= (f_U \ast f_V)(x).
\]

\(\rightarrow \) Convolution product of \(f_U \) and \(f_V \).

Let \(S = \sum_{i=1}^{n} U_i \) be the sum of \(n \) i.i.d. random variables,

\[
f_S(x) = \int \int \ldots \int f_U(x-y)f_U(y)dy,
\]

\[
= f_U^{(*n)}(x).
\]

\(\leftrightarrow \) \(f_U^{(*n)} \) refers to the \(n \)-fold convolution of \(f_U \) with itself.
The Laplace transform of a random variable is defined as

\[\mathcal{L}_U(s) = E(e^{sU}) = \int e^{sx} f_U(x) d\lambda(x), \]

Thus the Laplace transforms of sums of independent random variables is given by

\[\mathcal{L}_{U+V}(s) = \mathcal{L}_U(s) \times \mathcal{L}_V(s), \]

\[\mathcal{L}_S(s) = [\mathcal{L}_U(s)]^n. \]
Compound geometric distribution.

- The random variable \(M = \sum_{i=1}^{N} U_i \) admits a compound distribution,

\[
d\mathbb{P}_M(x) = \mathbb{P}(N = 0)\delta_0(x) + d\mathbb{G}_M(x),
\]

where

\[
g_M(x) = \sum_{n=1}^{+\infty} \mathbb{P}(N = n)f_V^{(*)n}(x)
\]

\[
= \sum_{n=1}^{+\infty} (1 - p)p^n \int \int \ldots \int f_V(x - y)f_V(y)dy,
\]

and

\[
\psi(u) = \mathbb{P}(M > u)
\]

\[
= \int_{u}^{+\infty} \sum_{n=0}^{+\infty} (1 - p)p^n \int \int \ldots \int f_V(x - y)f_V(y)dydx.
\]
Laplace transform of ruin probabilities.

The Laplace transform of M is given by,

$$\mathcal{L}_M(s) = G_N[\mathcal{L}_V(s)].$$

- G_N is the probability generating function of N,

$$G_N(s) = \mathbb{E}(s^N) = \sum_{k=0}^{+\infty} (1 - p)p^k s^k$$

which implies that

$$\mathcal{L}_M(s) = \frac{1 - p}{1 - p\mathcal{L}_V(s)},$$

and finally

$$\mathcal{L}_\psi(s) = \frac{1}{s} [1 + \mathcal{L}_M(s)].$$
The polynomial approximation:
Univariate case

Let X be a random variable governed by \mathbb{P}_X, with PDF f_X.

- ν is a reference probability measure, with PDF f_{ν}.
 - \mathbb{P}_X is absolutely continuous with respect to ν,
 $$f_{X,\nu}(x) = \frac{d\mathbb{P}_X}{d\nu}(x).$$

- $\{Q_k\}_{k \in \mathbb{N}}$ is a system of orthogonal polynomials with respect to ν,
 $$\langle Q_k, Q_l \rangle = \int Q_k(x)Q_l(x)d\nu(x) = \delta_{kl}, \quad k, l \in \mathbb{N}.$$

The idea is to perform an orthogonal projection of $f_{X,\nu}$ onto the orthogonal basis $\{Q_k\}_{k \in \mathbb{N}}$.
The polynomial approximation: Univariate case

- P_X is absolutely continuous with respect to ν, \(\Longleftrightarrow \) Existency of \(\frac{dP_X}{d\nu} \).
- The set of polynomials is a dense set of $L^2(\nu)$, \(\Longleftrightarrow \) \(\{ Q_k \}_{k \in \mathbb{N}} \) is an orthogonal system of $L^2(\nu)$.

If \(\frac{dP_X}{d\nu} \in L^2(\nu) \), then
\[
\frac{dP_X}{d\nu}(x) = \sum_{k=0}^{+\infty} a_k Q_k(x), \quad x \in \mathbb{R},
\]
where
\[
a_k = \mathbb{E}[Q_k(X)], \quad \forall k \in \mathbb{N}.
\]
The polynomial approximation:
Univariate case.

- The PDF of the random variable X admits a polynomial expansion,

$$f_X(x) = f_{X,\nu}(x)f_\nu(x) = \sum_{k=0}^{+\infty} a_k Q_k(x)f_\nu(x).$$

- Approximations follow from truncation of order K,

$$f_X^K(x) = f_{X,\nu}^K(x)f_\nu(x) = \sum_{k=0}^{K} a_k Q_k(x)f_\nu(x).$$

Approximations of the cumulating distribution function or the survival function are obtained through integration.
Polynomial approximation of ruin probabilities.

\[M = \sum_{i=1}^{N} V_i \] is governed by a probability measure

\[d\mathbb{P}_M(x) = (1 - p)\delta_0(x) + dG_M(x). \]

If \(\frac{dG_M}{d\nu} \in L^2(\nu) \) then,

\[\frac{dG_M}{d\nu}(x) = \sum_{k \in \mathbb{N}} < \frac{dG_M}{d\nu}, Q_k > Q_k(x). \]

The approximation of the ruin probability is derived by truncation and integration,

\[\psi^K(u) = \sum_{k=0}^{K} < \frac{dG_M}{d\nu}, Q_k > \int_{u}^{+\infty} Q_k(y)d\nu(y). \]
Choice of the reference probability measure.

dG_M is a defective probability measure having support on \mathbb{R}_+.

- The gamma distribution $\Gamma(m, r)$ has support on \mathbb{R}_+, its PDF is given by

$$d\nu(x) = \frac{x^{r-1}e^{-x/m}}{m^r \Gamma(r)} d\lambda(x)$$

- The orthogonal polynomials associated to the gamma measure are the generalized Laguerre polynomials.

The choice of the parameters m et r is really important.
Satisfaction of the integrability condition.

Theorem

Let X be a continuous and non-negative random variable,

H1 There exists $\gamma_X = \inf\{s > 0, \mathcal{L}_X(s) = +\infty\}.$

H2 Let $a \geq 0$, $x \mapsto f_X(x)$ is monotonically decreasing for $x \geq a$.

Then, for $x \geq a$,

$$f_X(x) < A(s_0)e^{-s_0 x}, \quad 0 < s_0 \leq \gamma_X.$$

In the case of ruin probabilities, **H2** is checked, and

$\gamma_M = \inf\{s > 0, \mathcal{L}_{g_M}(s) = +\infty\}$ is the unique solution of

$$L_V(s) = p^{-1}.$$
Satisfaction of the integrability condition.

The integrability condition may be rewritten as

\[\int \left[\frac{dG_M}{d\nu}(x) \right]^2 d\nu(x) < +\infty \iff \int_0^{+\infty} g_M^2(x) e^{x/m} x^{1-r} dx < +\infty. \]

Applying \(g_M \), for \(s_0 < \gamma_M \), leads to

\[\int g_M^2(x) e^{x/m} x^{1-r} dx < A(s_0) \int e^{-x(2s_0 - \frac{1}{m})} x^{1-r} dx. \]

The integrability condition is satisfied if the parameters is setted as follows

\[r \in (0, 1], \quad \frac{1}{m} \in (0, 2\gamma_M). \]
Study of the decay of \(\{ a_k \}_{k \in \mathbb{N}} \):

First result.

The quadratic loss after of the polynomial approximation is given by

\[
L(g_{M,\nu}, g_{M,\nu}^K) = \int \left[g_{M,\nu}(x) - g_{M,\nu}^K(x) \right]^2 d\nu(x) \\
= \sum_{k=K+1}^{\infty} a_k^2.
\]

⇒ Direct link between the decreasing of \(\{ a_k \}_{k \in \mathbb{N}} \) and the accuracy of the polynomial approximation.

Proposition

\(H1 \) \(x \mapsto g_{M,\nu}(x) \) is continuous and twice differentiable function

\(H2 \) \(g_{M,\nu}, g_{M,\nu}^{(1)}, g_{M,\nu}^{(2)} \in L^2(\nu) \)

\[
a_k = o\left(\frac{1}{k}\right), \quad k \to +\infty.
\]
Study of the decay of $\{a_k\}_{k \in \mathbb{N}}$:

Study of the generating function.

The defective PDF of M admits the polynomial representation

$$g_M(x) = \sum_{k=0}^{+\infty} a_k Q_k(x) f_\nu(x).$$

Taking the Laplace transform leads to

$$L_{g_M}(s) = \left(\frac{1}{1 - sm}\right)^r C \left(\frac{sm}{1 - sm}\right),$$

where $C(z) = \sum_{k=0}^{+\infty} a_k c_k z^k$, and

$$c_k = \sqrt{\binom{k + r - 1}{k}}.$$
Study of the decay of \(\{ a_k \}_{k \in \mathbb{N}} \):

Study of the generating function.

The generating function of the coefficients is expressed in term of the Laplace transform via

\[
C(z) = (1 + z)^{-r} L_{gM} \left[\frac{z}{m(1 + z)} \right].
\]

- The coefficients follow from differentiations and evaluations at 0,

\[
a_k = \frac{1}{c_k k!} \left[C^{(k)}(z) \right]_{z=0}.
\]

NB: the choice of \(m \) et \(r \) alter the generating in order to make it simpler.
Study of the decay of \(\{a_k\}_{k \in \mathbb{N}} \): \(\Gamma(1, \beta) \) distributed claim sizes.

If \(U_i \sim \Gamma(1, \beta) \), then

\[
L_{g_M}(s) = \frac{p}{1 + \frac{\beta}{(1-p)} s},
\]

and

\[
C(z) = \frac{p m (1 + z)^{1-r}}{m + z \left(m - \frac{\beta}{1-p} \right)}.
\]

\(m = \frac{\beta}{1-p} \) and \(r = 1 \)

\[
C(z) = p.
\]

\(a_0 = p \), and \(a_k = 0 \) for \(k \geq 1 \).
Numerical illustrations:
\(\Gamma(\alpha, \beta) \) distributed claim sizes.

- Intensity of the Poisson process: \(\lambda = 1 \),
- Claim sizes \(\Gamma(2, 1) \) distributed,
- Premium rate: \(c = 5 \),
- Adjustment coefficient: \(\gamma_M = \frac{1}{24} \left(19 - \sqrt{265} \right) \).

The ruin probability is given by

\[
\psi(u) = 0.461861 e^{-0.441742u} - 0.0618615 e^{-1.35826u}.
\]

Several parametrizations are tested with an order of truncation \(K = 40 \).

- The accuracy is given in terms of relative error,

\[
\Delta \psi(u) = \frac{\psi_{\text{Approx}}(u) - \psi(u)}{\psi(u)}.
\]
Numerical illustrations: $\Gamma(\alpha, \beta)$ distributed claim sizes.
Numerical illustrations: $\Gamma(\alpha, \beta)$ distributed claim sizes.
Numerical illustrations:
\(\Gamma(\alpha, \beta) \) distributed claim sizes.
Numerical illustrations: \(\mathcal{U}(\alpha, \beta) \) distributed claim sizes.

- Intensity of the Poisson process: \(\lambda = 1 \),
- Claim sizes \(\mathcal{U}(0, 100) \) distributed,
- Premium rate: \(c = 80 \),
- Adjustments coefficient: \(\gamma_M = 0.013 \),
- Truncation order: \(K=40 \).

The ruin probability is not available in a closed form.

- The approximation using the direct Fourier transform inversion is used as benchmark.
Numerical illustrations:
$U(\alpha, \beta)$ distributed claim sizes.
Two insurers and one reinsurer: Bivariate collective model.

Consider 2 non-life insurance portfolios associated to the same line of business of two insurance company.

- The risks are modeled jointly via

\[
\begin{pmatrix}
X_1 \\
X_2
\end{pmatrix}
= \begin{pmatrix}
\sum_{j=1}^{N_1} U_{1j} \\
\sum_{j=1}^{N_2} U_{2j}
\end{pmatrix}
+ \sum_{j=1}^{M} \begin{pmatrix}
V_{1j} \\
V_{2j}
\end{pmatrix},
\]

- \(N_1\) and \(N_2\) are assumed to be independent,
- Polynomial approximation of the joint PDF of \((X_1, X_2)\).
A global reinsurance treaty

The reinsurer propose to insurer i a non proportional reinsurance contract with priority b_i and limit c_i, for $i \in \{1, 2\}$.

The joint distribution of (X_1, X_2) is useful.

- To compute the premium associated with this reinsurance treaty.
- To study the risk exposure of the reinsurer

$$Z = \min [(X_1 - b_1)_+, c_1] + \min [(X_2 - b_2)_+, c_2],$$

where $(.)_+$ denotes the positive part.

\leftrightarrow Value-at-Risk of Z and solvability margins.
The polynomial approximation: Bivariate case.

Let \((X_1, X_2)\) be a random vector \(\mathbb{P}_{X_1, X_2}\), admiting a PDF \(f_{X_1, X_2}\).

- \(\nu\) is the reference probability measure, builded from the product of two probability measures,

\[
\nu(x_1, x_2) = \nu_1(x_1) \times \nu_2(x_2),
\]
\[
f_{\nu}(x_1, x_2) = f_{\nu_1}(x_1) \times f_{\nu_2}(x_2).
\]

- \(\{Q^{\nu_i}_k\}_{k \in \mathbb{N}}\) is an orthonormal polynomial system with respect to \(\nu_i\), for \(i \in \{1, 2\}\).

- \(\{Q_{k,l}\}_{k,l \in \mathbb{N}}\) is an orthonormal polynomial system with respect to \(\nu\), where

\[
Q_{k,l}(x_1, x_2) = Q^{\nu_1}_k(x_1)Q^{\nu_2}_l(x_2), \quad k, l \in \mathbb{N}.
\]
The polynomial approximation method extends naturally within a two-dimensional context:

- Integrability condition.
- Exponential bound for the joint density if the bivariate Laplace transforms exists for positive arguments.
- Link between the Laplace transform and the generating function of the coefficients.
Bivariate aggregate claim amounts distribution.

The probability distribution of the random vector

\[
\begin{pmatrix}
X_1 \\
X_2
\end{pmatrix}
= \begin{pmatrix}
\sum_{j=1}^{N_1} U_{1j} \\
\sum_{j=1}^{N_2} U_{2j}
\end{pmatrix} + \sum_{j=1}^{M} \begin{pmatrix}
V_{1j} \\
V_{2j}
\end{pmatrix}
= \begin{pmatrix}
W_1 \\
W_2
\end{pmatrix} + \begin{pmatrix}
Y_1 \\
Y_2
\end{pmatrix},
\]

admits a bunch of singularities...
Choice of the reference probability measure.

▶ The distribution of $\begin{pmatrix} W_1 \\ W_2 \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{N_1} U_{1j} \\ \sum_{j=1}^{N_2} U_{2j} \end{pmatrix}$, is given by

$$dP_{W_1, W_2}(w_1, w_2) = f_{N_1}(0)f_{N_2}(0)\delta_{0,0}(w_1, w_2) + dG_{W_1}(w_1) \times dG_{W_2}(w_2) + f_{N_1}(0)dG_{W_2}(w_2) \times \delta_0(w_1) + f_{N_2}(0)dG_{W_1}(w_1) \times \delta_0(w_2).$$

▶ Univariate polynomial approximations of G_{W_i}, for $i = 1, 2$.

\leftrightarrow Gamma probability distribution and generalized Laguerre polynomials.
Choice of the reference probability measure.

- The probability distribution of \(\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \sum_{j=1}^{M} \begin{pmatrix} V_{1j} \\ V_{2j} \end{pmatrix} \), is given by

\[
dP_{Y_1, Y_2}(y_1, y_2) = f_M(0)\delta_{0,0}(y_1, y_2) + dG_{Y_1, Y_2}(y_1, y_2).
\]

\(dG_{Y_1, Y_2} \) is defective probability distribution having support on \(\mathbb{R}^2_+ \).

- The probability measure \(\nu \) is the product of two gamma measure.

\[\nu \] is a \(\Gamma(m_i, r_i) \) probabilty measure, for \(i = 1, 2 \).

\(\{ Q_{k}^{\nu_i} \}_{k \in \mathbb{N}} \) is a generalized Laguerre polynomials sequence, for \(i = 1, 2 \).
Numerical illustrations:
Survival function of \((Y_1, Y_2)\)

- \(M\) is governed by a negative binomial distribution \(\mathcal{NB}(1, 3/4)\),
- \((V_1, V_2)\) admits a bivariate exponential distribution of Downton type \(\text{DBVE}(\rho, \mu_1, \mu_2)\),
 \[\rho = \frac{1}{4}, \quad \mu_1 = \mu_2 = 1, \]
- The polynomial approximation is compared to Monte Carlo approximations.

The parametrization

\[
m_1 = \frac{1}{(1 - p)\mu_1}, \quad m_2 = \frac{1}{(1 - p)\mu_2}, \quad r_1 = r_2 = 1.
\]

leads to

\[
C(z_1, z_2) = \frac{1}{1 + z_1 z_2(p^2 - \rho(1 - p)^2 - p)},
\]

and therefore

\[
a_{k,l} = [p^2 - \rho(1 - p)^2 - p]^k \delta_{kl}, \quad k, l \in \mathbb{N}.
\]
Numerical illustrations:
Survival function of \((Y_1, Y_2)\)
Illustrations numériques: Distribution of \((X_1, X_2)\)

- \(N_1\) and \(N_2\) are \(NB(1, 3/4)\) distributed,
- \(\{U_{1j}\}_{j \in \mathbb{N}}\) et \(\{U_{2j}\}_{j \in \mathbb{N}}\) are \textit{i.i.d.} random variables \(\Gamma(1, 1)\) distributed,
 \(\leadsto\) PDF available in a closed form in the case of the geometric compound distribution with exponential claim sizes.
- Approximation of the survival function of \((X_1, X_2)\).
- Priorities: \(c_1 = c_2 = 1\),
- Limits: \(b_1 = b_2 = 4\),
- Approximation of the survival function of
 \[
 Z = \min \left[(X_1 - b_1)_+, c_1 \right] + \min \left[(X_2 - b_2)_+, c_2 \right].
 \]
- The polynomial approximations are compared to Monte Carlo approximations.
Numerical illustrations:
Survival function of \((X_1, X_2)\)
Numerical Illustrations: Cost of reinsurance

<table>
<thead>
<tr>
<th>z</th>
<th>Monte Carlo approximation</th>
<th>Polynomial approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.90385</td>
<td>0.898808</td>
</tr>
<tr>
<td>2</td>
<td>0.73193</td>
<td>0.724774</td>
</tr>
<tr>
<td>4</td>
<td>0.44237</td>
<td>0.435013</td>
</tr>
<tr>
<td>6</td>
<td>0.24296</td>
<td>0.237576</td>
</tr>
</tbody>
</table>
Conclusions et Perspectives

- The polynomial approximation is an efficient numerical method:
 - Approximation of the probability of ultimate ruin in the compound Poisson ruin model,
 - Approximation of probabilities associated to a bivariate aggregate claim amounts distribution with interesting reinsurance application.

Perspectives

- Application of this method to other actuarial problem or related to other fields of applied probability.
- Statistical application when data are available,
- The approximation formula can be turned into a semi-parametrical estimator of the PDF.
My supervisors
Approximation method 1: Panjer’s algorithm.

Panjer’s family

N is governed by a counting distribution that belongs to Panjer’s family if

$$f_N(k + 1) = \left(a + \frac{b}{k} \right) f_N(k).$$

And its recursive algorithm

If U admits a discrete probability distribution then $M = \sum_{i=1}^{N} U_i$ too and

$$f_M(k) = \begin{cases} G_N (f_U(0)) & \text{si } k = 0 \\ \frac{1}{1 - af_U(0)} \sum_{j=1}^{k} \left(a + \frac{bj}{k} \right) f_U(j) f_M(k-j) & \text{si } k \geq 1 \end{cases}.$$
Direct Fourier transform inversion.

Fourier transform definition
Let $x \mapsto g(x)$ be a real function, its Fourier transform is defined as

$$\mathcal{L}_g(is) = \int_0^{+\infty} e^{isx} g(x) dx$$

Fourier transform inversion formula
If $\int_{-\infty}^{+\infty} |\mathcal{L}_g(is)| ds < +\infty$, and g is continuous and bounded then

$$g(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-isx} \mathcal{L}_g(is) ds$$
Consider

\[g(u) = \begin{cases}
 e^{-ut} \psi(u) & \text{Si } u \geq 0 \\
 g(-u) & \text{Si } u < 0
\end{cases}. \]

then

\[\psi(u) = \frac{2e^{ua}}{\pi} \int_{0}^{+\infty} \cos(uy) \Re \left[\mathcal{L}_\psi(a + iy) \right] dy, \]

and finally

\[\tilde{\psi}(u) = \frac{2e^{ua}}{\pi} h \left\{ \frac{1}{2} \Re \left[\mathcal{L}_\psi(a) \right] + \sum_{k=1}^{+\infty} \cos(ukh) \Re \left[\mathcal{L}_\psi(a + ikh) \right] \right\}. \]
Approximation method 3: Exponential moments.

- Approximation of the cumulating distribution function through a mixed binomial distribution.
- \(Y \) is a continuous random variable, with values in \([0, 1]\) and governed by \(\mathbb{P}_Y \).

\[B_{n,\mathbb{P}_Y}(y) = \sum_{k=0}^{\lfloor ny \rfloor} \int_0^1 \binom{n}{k} z^k (1 - z)^{n-k} d\mathbb{P}_Y(z) \]

\[= \sum_{k=0}^{\lfloor ny \rfloor} \binom{n}{k} \mathbb{E} \left[Y^k (1 - Y)^{n-k} \right] \]

\[= \sum_{k=0}^{\lfloor ny \rfloor} \sum_{j=k}^{n} \binom{n}{j} \binom{j}{k} (-1)^{j-k} \mathbb{E} \left[Y^j \right] \]
The method is based on the following convergence result

\[\int_0^1 \sum_{k=0}^\lfloor ny \rfloor \binom{n}{k} z^k (1 - z)^{n-k} d\mathbb{P}_Y(z) \to \int_0^1 1_{z<y} d\mathbb{P}_Y(z), \quad n \to +\infty \]

The cumulating distribution function is approximated by

\[F_Y(y) \approx \sum_{k=0}^\lfloor ny \rfloor \sum_{j=k}^n \binom{n}{j} \binom{j}{k} (-1)^{j-k} \mathbb{E}(Y^j) \cdot \]

\(X \) is \(\mathbb{R}^+ \)-valued random variable.

\[\leftrightarrow \quad \text{Change of variable } Y = e^{-cX} \text{ where } 0 < c < 1, \]

\[F_X(x) \approx \sum_{k=0}^\lfloor ne^{-cx} \rfloor \sum_{j=k}^n \binom{n}{j} \binom{j}{k} (-1)^{j-k} \mathcal{L}_X(-jc). \]
Comparison: Monte Carlo VS Polynomial

Example: Compound Poisson distribution $[\mathcal{P}(2), \Gamma(3, 1)]$,

- Order of truncation: $K=75 \Rightarrow 20$ sec,
 600 000 Monte Carlo simulations.
Comparison: Monte Carlo VS Polynomials

Monte Carlo

Polynomial

$\Delta P(x>\chi)$

0.00 0.02 0.04 0.06 0.08

0 -5×10^{-9} -1×10^{-9} -1.5×10^{-9} 1×10^{-9} 5×10^{-9} 1.5×10^{-8}

x 0 5 10 15 20 25 30

Monte Carlo

Polynomial

$P(x>\chi)$

0.0 0.2 0.4 0.6 0.8

0 5 10 15 20 25 30

Monte Carlo

$P(x>\chi)$

0.0 0.2 0.4 0.6 0.8

0 5 10 15 20 25 30
Statistical application:
Definition of the estimator

Let X_1, \ldots, X_n be a sample of size n.

- The polynomial approximation of the PDF is given by

$$f_X^K(x) = f_{X,\nu}^K(x)f_\nu(x) = \sum_{k=0}^{K} a_k Q_k(x)f_\nu(x).$$

- The approximation formula turns into a PDF estimator

$$\hat{f}_X^K(x) = \hat{f}_{X,\nu}^K(x)\hat{f}_\nu(x) = \sum_{k=0}^{K} \hat{a}_k Q_k(x)\hat{f}_\nu(x).$$

The statistical inference is a two-step procedure,

1. Parametrical estimation of the parameters of the reference probability measure,
Statistical application:
Definition of the estimator

The coefficients of the polynomial are

\[a_n = \mathbb{E} [Q_k(X)], \quad k \in \mathbb{N}. \]

Nonbisasedly estimated by

\[Z_k = \frac{1}{n} \sum_{i=1}^{n} Q_k(X_i), \quad k = 1, \ldots, K, \]

with associated variance denoted by \(\sigma_{k,n}^2 = \mathbb{V}(Z_k) \).

The coefficients of the polynomial expansion are estimated by

\[\hat{a}_k = w_k Z_k, \]

where \(w = (w_1, \ldots, w_K) \) is a modulator.

Allow an optimisation of the Integrated Mean Squared Error (IMSE).

We set \(K = n \) in what comes next.
Statistical application: IMSE

The Integrated Mean Squared Error is defined as

\[
\text{IMSE}(\hat{f}_{X,\nu}^n, f_{X,\nu}) = \mathbb{E} \int \left[\hat{f}_{X,\nu}(x) - f_{X,\nu}(x) \right]^2 dx
= \sum_{k=1}^{n} (1 - w_k)^2 a_k^2 + \sum_{k=n+1}^{+\infty} a_k^2
+ \sum_{k=1}^{n} w_k^2 \sigma_{k,n}^2.
\]

A modified version of the Integrated Mean Squared Error is optimized

\[
\text{EQMI}(\hat{f}_{X,\nu}^n, f_{X,\nu}^n) = \sum_{k=1}^{n} w_k^2 \sigma_{k,n}^2 + \sum_{k=1}^{n} (1 - w_k)^2 a_k^2.
\]
Statistical application:

IMSE

The quantities $\sigma^2_k, \sigma^2_{k,n}$ are unbiasedly estimated through

$$
\hat{\sigma}_{k,n}^2 = \frac{1}{n(n-1)} \sum_{i=1}^{n} [Q_k(X_i) - Z_k]^2, \quad k = 1, \ldots, n,
$$

$$
\hat{a}_k^2 = \max (Z_k^2 - \hat{\sigma}_{k,n}^2, 0), \quad k = 1, \ldots, n.
$$

The Integrated Mean Squared Error is estimated by

$$
\hat{\text{IMSE}} \left(f_{X,\nu}^n, f_{X,\nu}^n \right) = \sum_{k=1}^{n} w_k^2 \hat{\sigma}_{k,n}^2 + \sum_{k=1}^{n} (1 - w_k)^2 \hat{a}_k^2.
$$
Statistical application:
Subset Selection Modulator

\(M_{SSM} \) denotes the Subset Selection class of modulator such that
\(w = (1, \ldots, 1, 0, \ldots, 0) \).

- Computation of the IMSE \(\forall w \in M_{SME} \).

Illustration: Estimation of the PDF of the \textit{Inverse Gaussian} distribution \(IG(\lambda, \mu) \). The expression of the PDF is given by

\[
f_X(x) = \begin{cases}
\frac{\lambda^\frac{3}{2} e^{-\frac{\lambda(x-\mu)^2}{2\mu^2x}}}{\sqrt{2\pi}}, & x > 0, \\
0, & \text{Sinon.}
\end{cases}
\]

- Distribution of the hitting time at a given level of a brownian motion with drift,

- We set \(\lambda = 2 \), and \(\mu = 4 \).
Statistical application: Visualization of the data

$\text{Obs}=10$

$\text{Obs}=100$

$\text{Obs}=500$

$\text{Obs}=1000$
Statistical application: IMSE
Statistical application: Sample's size = 10
Statistical application:
Sample’s size = 100

- Polynomial
- Empirical
- Parametric
- Survival Function
Statistical application:
Sample’s size = 500
Statistical application:
Sample’s size = 1 000

Polynomial

Empirical

Parametric

Survival Function
Statistical application: Compound distribution

- Aggregate claim amounts sample: \((X_1, \ldots, X_n)\),
- Claim frequency sample: \((N_1, \ldots, N_n)\),
- Claim amounts sample: \((U_1, \ldots, U_{N_1}, \ldots, U_{N_1+\ldots+N_n})\).

The size of the sample available for the aggregate claim amounts and the claim frequencies may be small.
- More observations are available for the claim sizes.
Statistical application: Compound distribution

Full Parametric

- Adequacy statistical test to calibrate the model for claim sizes and claim frequency,
- Statistical inference of the parameters,
- Approximation method.
Statistical application: Compound distribution

Full NonParametric

- Statistical inference of the parameters of the reference distribution,
 - Using which sample?
- The coefficient of the polynomial expansion are estimated using \((X_1, \ldots, X_n)\).
Statistical application: Compound distribution

Semi-Parametric

- Parametric model for the claim frequency.
- Statistical inference for the claim frequency model,
 We use \((N_1, \ldots, N_n)\).
- The coefficients of the polynomial expansion are estimated using \((U_1, \ldots, U_{N_1}, \ldots, U_{N_1+\ldots+N_n})\), and the recurrence relationship that often exists between the moments of \(X, N, \text{et } U\).