
Polynomial aproximations of probability
density functions
Applications to insurance

P.O. Goffard

Axa France - Institut de Mathématiques de Marseille I2M
Aix-Marseille Université

Aarhus University seminar



Insurer’s liability:
Univariate aggregate claim
amounts.

Consider a non-life insurance portfolio.
I Over a given time period,

↪→ The number of claims is modeled through a counting random
variable N,

↪→ The claim sizes are a sequence of non-negative, i.i.d. random
variables (Ui )i∈N.

I The aggregate claim amounts is defined as

X =
N∑

i=1

Ui ,

↪→ {Ui}i∈N are independent of N.

X is governed by a compound distribution (PN ,PU).

,
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Dependency among the risks:
Multivariate aggregate claim
amounts.

Consider n non-life insurance portfolios,

I The risks are jointly modeled via
X1
...
Xn

 =


∑N1

j=1 U1j
...∑Nn

j=1 Unj

+
M∑

j=1


V1j
...
Vnj

 ,

↪→ N = (N1, . . . ,Nn) is a vector of counting random variables,
↪→ (U1j )j∈N, . . . , (Unj )j∈N are independent sequences of non-negative

and i.i.d. random variables,
↪→ {Vi}i∈N = {(V1i , . . . ,Vni )}i∈N is a sequence of i.i.d. random

vectors,
↪→ M is a counting random variable,
↪→ {Vi}i∈N, N, M and (Uj1)j∈N, . . . , (Ujn)j∈N are independent.

,
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Ruin Theory: A more dynamic
vision of risk management.

Consider a non-life insurance portfolio.
I Let t ≥ 0 denotes the time,

↪→ The number of claim until time t is a counting process {Nt}t≥0,
↪→ The claim sizes are a sequence of i.i.d., non-negative random

variables (Ui )i∈N.

I The liability of the insurer at time t are

Xt =

Nt∑
i=1

Ui ,

↪→ (Ui )i∈N is independent of {Nt}t≥0.

,
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Ruin Theory: A more dynamic
vision of risk management.

I The financial reserve allocated to this portfolio, a.k.a. Risk
Reserve Process, is

Rt = u + ct −
Nt∑

i=1

Ui ,

↪→ u denotes the initial reserve,
↪→ c denotes the rate at which premiums are collected per unit of time.

I The Claim Surplus process is defined as

St = u − Rt .

,
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Ruin theory:
A graphical visualization.

,
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Numerical Methods:
A guided tour.

,
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EXECUTIVE SUMMARY.

Application of the polynomial approximation method to two problem.

1. Computation of the ultimate ruin probability in the compound
Poisson ruin model.
↪→ {Nt}t≥0 is a Poisson process with intensity λ.

2. Study of a bivariate aggregate claim amounts distribution with
reinsurance motivations.

,
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Ruin probability definition

I Infinite time horizon ruin probability or ultimate ruin probability,

ψ(u) = P
(

inf
t≥0

Rt < 0; R0 = u
)
.

I Finite time horizon ruin probability,

ψ(u,T ) = P
(

inf
t∈[0,T ]

Rt < 0; R0 = u
)
.

I Infinite and finite time horizon non ruin probabilities,

φ(u) = 1− ψ(u) φ(u,T ) = 1− φ(u,T ).

,
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Alternative definition for ruin
probabilities.

I Time to ruin and Claims surplus process maximum,

τu = inf{t ≥ 0 : Rt < 0} = inf{t ≥ 0 : St > u},

M = sup
t≥0

St , MT = sup
t∈[0,T ]

St .

I Infinite and finite time horizon ruin probabilities,

ψ(u) = P (τu <∞) = P (M > u) ,

ψ(u,T ) = P (τu < T ) = P (MT > u) .

,
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The safety loading.

The average amount of claims per unit of time is given by

1
t
E (Xt ) = λE(U).

I The safety loading η, is defined as

c = (1 + η)λE(U).

I Net Benefit Condition
η > 0,

↪→ If η < 0 then ψ(u) = 1,
↪→ If η > 0 then ψ(u) < 1.

,
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Ultimate ruin probability:
Pollaczek-Khinchine formula.
In the frame of the compound Poisson ruin model,

ψ(u) = P (M > u) M D
=

N∑
i=1

Vi ,

I N is governed by a geometric distribution G(p), where
p = λE(U)

c < 1 and

P(N = n) = (1− p)pn.

I (Vi )i∈N∗ is a sequence of i.i.d. and non-negative random variable
having PDF,

fV (x) =
P(U > x)

E(U)
.

I (Vi )i∈N∗ and N are independent.

,
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Notations:
Convolution product.

I Let U and V be two random variables with associated PDF fU et
fV ,

fU+V (x) =

∫
fU(x − y)fV (y)dy ,

= (fU ∗ fV )(x).

↪→ Convolution product of fU and fV .

I Let S =
∑n

i=1 Ui be the sum of n i.i.d. random variables,

fS(x) =

∫ ∫
. . .

∫
fU(x − y)fU(y)dy ,

= f (∗n)U (x).

↪→ f (∗n)U referes to the n-fold convolution of fU with itself.

,
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Notations:
Laplace transform.

The Laplace transform of a random variable is defined as

LU(s) = E
(
esU) =

∫
esx fU(x)dλ(x),

Thus the Laplace transforms of sums of independent random
variables is given by

LU+V (s) = LU(s)× LV (s),

LS(s) = [LU(s)]n .

,
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Compound geometric
distribution.

I The random variable M =
∑N

i=1 Ui admits a compound
distribution,

dPM(x) = P(N = 0)δ0(x) + dGM(x),

where

gM(x) =
+∞∑
n=1

P(N = n)f (∗n)V (x)

=
+∞∑
n=1

(1− p)pn
∫ ∫

. . .

∫
fV (x − y)fV (y)dy ,

and

ψ(u) = P(M > u)

=

∫ +∞

u

+∞∑
n=0

(1− p)pn
∫ ∫

. . .

∫
fV (x − y)fV (y)dydx .

,
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Laplace transform of ruin
probabilities.
The Laplace transform of M is given by,

LM(s) = GN [LV (s)].

I GN is the probability generating function of N,

GN(s) = E
(
sN) =

+∞∑
k=0

(1− p)pk sk

which implies that

LM(s) =
1− p

1− pLV (s)
,

and finally

Lψ(s) =
1
s

[1 + LM(s)] .

,
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The polynomial approximation:
Univariate case

Let X be a random variable governed by PX , with PDF fX .
I ν is a reference probability measure, with PDF fν .

↪→ PX is absolutely continuous with respect to ν,

fX ,ν(x) =
dPX

dν
(x).

I {Qk}k∈N is a system of orthogonal polynomials with respect to ν,

< Qk ,Ql >=

∫
Qk (x)Ql (x)dν(x) = δkl , k , l ∈ N.

The idea is to perform an orthogonal projection of fX ,ν onto the
orthogonal basis {Qk}k∈N.

,
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The polynomial approximation:
Univariate case

I PX is absolutely continuous with respect to ν,
↪→ Existency of dPX

dν .

I The set of polynomials is a dense set of L2(ν),
↪→ {Qk}k∈N is an orthogonal system of L2(ν).

If dPX
dν ∈ L2(ν), then

dPX

dν
(x) =

+∞∑
k=0

ak Qk (x), x ∈ R,

where
ak = E [Qk (X )] , ∀k ∈ N.

,
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The polynomial approximation:
Univariate case.

I The PDF of the random variable X admits a polynomial
expansion,

fX (x) = fX ,ν(x)fν(x) =
+∞∑
k=0

ak Qk (x)fν(x).

I Approximations follow from truncation of order K ,

f K
X (x) = f K

X ,ν(x)fν(x) =
K∑

k=0

ak Qk (x)fν(x).

Approximations of the cumulating distribution function or the survival
function are obtained through integration.

,
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Polynomial approximation of ruin
probabilities.

M =
∑N

i=1 Vi is governed by a probability measure

dPM(x) = (1− p)δ0(x) + dGM(x).

If dGM
dν ∈ L2(ν) then,

dGM

dν
(x) =

∑
k∈N

<
dGM

dν
,Qk > Qk (x).

The approximation of the ruin probability is derived by truncation and
integration,

ψK (u) =
K∑

k=0

<
dGM

dν
,Qk >

∫ +∞

u
Qk (y)dν(y).

,
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Choice of the reference
probability measure.

dGM is a defective probability measure having support on R+.

I The gamma distribution Γ(m, r) has support on R+, its PDF is
given by

dν(x) =
x r−1e−x/m

mr Γ(r)
dλ(x)

I The orthogonal polynomials associated to the gamma measure
are the generalized Laguerre polynomials.

The choice of the parameters m et r is really important.

,
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Satisfaction of the integrability
condition.

Theorem
Let X be a continuous and non-negative random variable,

H1 There exists γX = inf{s > 0,LX (s) = +∞}.
H2 Let a ≥ 0, x 7→ fX (x) is monotically decreasing for x ≥ a.

Then, for x ≥ a,

fX (x) < A(s0)e−s0x , 0 < s0 ≤ γX .

In the case of ruin probabilities, H2 is checked, and
γM = inf{s > 0,LgM (s) = +∞} is the unique solution of

LV (s) = p−1.

,
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Satisfaction of the integrability
condition.

The integrability condition may be rewritten as∫ [
dGM

dν
(x)

]2

dν(x) < +∞⇔
∫ +∞

0
g2

M(x)ex/mx1−r dx < +∞.

Applying gM , for s0 < γM , leads to∫
g2

M(x)ex/mx1−r dx < A(s0)

∫
e−x(2s0− 1

m )x1−r dx .

The integrability condition is satisfied if the parameters is setted as
follows

r ∈ (0,1] ,
1
m
∈ (0,2γM) .

,
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Study of the decay of {ak}k∈N:
First result.
The quadratic loss after of the polynomial approximation is given by

L
(
gM,ν ,gK

M,ν
)

=

∫ [
gM,ν(x)− gK

M,ν(x)
]2

dν(x)

=
+∞∑

k=K+1

a2
k .

⇒ Direct link between the decreasing of {ak}k∈N and the accuracy
of the polynomial approximation.

Proposition

H1 x 7→ gM,ν(x) is continuous and twice differentiable function

H2 gM,ν , g(1)
M,ν , g(2)

M,ν ∈ L2(ν)

ak = o
(

1
k

)
, k → +∞.

,
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Study of the decay of {ak}k∈N:
Study of the generating function.

The defective PDF of M admits the polynomial representation

gM(x) =
+∞∑
k=0

ak Qk (x)fν(x).

Taking the Laplace transform leads to

LgM (s) =

(
1

1− sm

)r

C
(

sm
1− sm

)
,

where C(z) =
∑+∞

k=0 ak ck zk , and

ck =

√(
k + r − 1

k

)
.

,
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Study of the decay of {ak}k∈N:
Study of the generating function.

The generating function of the coefficients is expressed in term of the
Laplace transform via

C(z) = (1 + z)−r LgM

[
z

m(1 + z)

]
.

I The coefficients follow from differentiations and evaluations at 0,

ak =
1

ck k !

[
C(k)(z)

]
z=0

.

NB: the choice of m et r alter the generating in order to make it
simpler.

,
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Study of the decay of {ak}k∈N:
Γ(1, β) distributed claim sizes.

If Ui ∼ Γ(1, β), then

LgM (s) =
p

1 + β
(1−p)s

,

and

C(z) =
pm(1 + z)1−r

m + z
(

m − β
1−p

) .
I m = β

1−p and r = 1
C(z) = p.

I a0 = p, and ak = 0 for k ≥ 1.

,
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Numerical illustrations:
Γ(α, β) distributed claim sizes.

I Intensity of the Poisson process: λ = 1,
I Claim sizes Γ(2,1) distributed,
I Premium rate: c = 5,
I Adjustment coefficient: γM = 1

24

(
19−

√
265

)
.

The ruin probability is given by

ψ(u) = 0.461861e−0.441742u − 0.0618615e−1.35826u.

Several parametrizations are tested with an order of truncation
K = 40.

I The accuracy is given in terms of relative error,

∆ψ(u) =
ψApprox (u)− ψ(u)

ψ(u)
.

,
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Numerical illustrations:
Γ(α, β) distributed claim sizes.

,
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Numerical illustrations:
Γ(α, β) distributed claim sizes.

,
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Numerical illustrations:
Γ(α, β) distributed claim sizes.

,
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Numerical illustrations:
U(α, β) distributed claim sizes.

I Intensity of the Poisson process: λ = 1,

I Claim sizes U(0,100) distributed,

I Premium rate: c = 80,

I Adjustments coefficient: γM = 0.013,

I Truncation order: K=40.

The ruin probability is not available in a closed form.

I The approximation using the direct Fourier transform inversion is
used as benchmark.

,
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Numerical illustrations:
U(α, β) distributed claim sizes.

,
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Two insurers and one reinsurer:
Bivariate collective model.

Consider 2 non-life insurance portfolios associated to the same line of
business of two insurance company.

I The risks are modeled jointly via(
X1

X2

)
=

( ∑N1
j=1 U1j∑N2
j=1 U2j

)
+

M∑
j=1

(
V1j

V2j

)
,

I N1 and N2 are assumed to be independent,

I Polynomial approximation of the joint PDF of (X1,X2).

,
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A global reinsurance treaty

The reinsurer propose to insurer i a non proportional reinsurance
contract with priority bi and limit ci , for i ∈ {1,2}.

The joint distribution of (X1,X2) is useful.

I To compute the premium associated with this reinsurance treaty.

I To study the risk exposure of the reinsurer

Z = min
[
(X1 − b1)+ , c1

]
+ min

[
(X2 − b2)+ , c2

]
,

where (.)+ denotes the positive part.
↪→ Value-at-Risk of Z and solvability margins.

,
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The polynomial approximation:
Bivariate case.

Let (X1,X2) be a random vector PX1,X2 , admiting a PDF fX1,X2 .

I ν is the reference probability measure, builded from the product
of two probability measures,

ν(x1, x2) = ν1(x1)× ν2(x2),

fν(x1, x2) = fν1 (x1)× fν2 (x2).

I {Qνi
k }k∈N is an orthonormal polynomial system with respect to νi ,

for i ∈ {1,2}.
I {Qk,l}k,l∈N is an orthonormal polynomial system with respect to
ν, where

Qk,l (x1, x2) = Qν1
k (x1)Qν2

l (x2), k , l ∈ N.

,
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The polynomial approximation:
Bivariate case.

The polynomial approximation method extends naturally within a
two-dimensionnal context:

I Integrability condition.

I Exponential bound for the joint density if the bivariate Laplace
transforms exists for positive arguments.

I Link between the Laplace transform and the generating function
of the coefficients.

,
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Bivariate aggregate claim
amounts distribution.

The probability distribution of the random vector(
X1

X2

)
=

( ∑N1
j=1 U1j∑N2
j=1 U2j

)
+

M∑
j=1

(
V1j

V2j

)

=

(
W1

W2

)
+

(
Y1

Y2

)
,

admits a bunch of singularities...

,
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Choice of the reference
probability measure.

I The distribution of

(
W1

W2

)
=

( ∑N1
j=1 U1j∑N2
j=1 U2j

)
, is given by

dPW1,W2 (w1,w2) = fN1 (0)fN2 (0)δ0,0(w1,w2)

+ dGW1 (w1)× dGW2 (w2)

+ fN1 (0)dGW2 (w2)× δ0(w1)

+ fN2 (0)dGW1 (w1)× δ0(w2).

I Univariate polynomial approximations of GWi , for i = 1,2.
↪→ Gamma probability distribution and generalized Laguerre

polynomials.

,
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Choice of the reference
probability measure.

I The probability distribution of

(
Y1

Y2

)
=

M∑
j=1

(
V1j

V2j

)
, is given by

dPY1,Y2 (y1, y2) = fM(0)δ0,0(y1, y2) + dGY1,Y2 (y1, y2).

dGY1,Y2 is defective probability distribution having support on R2
+.

I The probability measure ν is the product of two gamma measure.

↪→ νi is a Γ(mi , ri ) probabilty measure, for i = 1, 2.
↪→ {Qνi

k }k∈N is a generalized Laguerre polynomials sequence, for
i = 1, 2.

,
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Numerical illustrations:
Survival function of (Y1,Y2)

I M is governed by a negative binomial distribution NB(1,3/4),
I (V1,V2) admits a bivariate exponential distribution of Downton

type DBVE(ρ, µ1, µ2),
↪→ ρ = 1

4 ,
↪→ µ1 = µ2 = 1,

I The polynomial approximation is compared to Monte Carlo
approximations.

The parametrization

m1 =
1

(1− p)µ1
, m2 =

1
(1− p)µ2

, r1 = r2 = 1.

leads to
C(z1, z2) =

1
1 + z1z2(p2 − ρ(1− p)2 − p)

,

and therefore

ak,l =
[
p2 − ρ(1− p)2 − p

]k
δkl , k , l ∈ N.

,
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Numerical illustrations:
Survival function of (Y1,Y2)

,
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Illustrations numériques:
Distribution of (X1,X2)

I N1 and N2 are NB(1,3/4) distributed,
I {U1j}j∈N et {U2j}j∈N are i.i.d. random variables Γ(1,1)

distributed,
↪→ PDF available in a closed form in the case of the geometric

compound distribution with exponential claim sizes.

I Approximation of the survival function of (X1,X2).

I Priorities: c1 = c2 = 1,

I Limits: b1 = b2 = 4,

I Approximation of the survival function of

Z = min
[
(X1 − b1)+ , c1

]
+ min

[
(X2 − b2)+ , c2

]
.

I The polynomial approximations are compared to Monte Carlo
approximations.

,
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Numerical illustrations:
Survival function of (X1,X2)

,
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Numerical Illustrations:
Cost of reinsurance

z Monte Carlo approximation Polynomial approximation

0 0.90385 0.898808
2 0.73193 0.724774
4 0.44237 0.435013
6 0.24296 0.237576

,
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Conclusions et
Perspectives

I The polynomial approximation is an efficient numerical method:
↪→ Approximation of the probability of ultimate ruin in the compound

Poisson ruin model,
↪→ Approximation of probabilities associated to a bivariate aggregate

claim amounts distribution with interesting reinsurance application.

Perspectives

I Application of this method to other actuarial problem or related to
other fields of applied probability.

I Statistical application when data are available,

↪→ The approximation formula can be turned into a
semi-parametrical estimator of the PDF.

,
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Approximation method 1:
Panjer’s algorithm.

Panjer’s family
N is governed by a counting distribution that belongs to Panjer’s
family if

fN(k + 1) =

(
a +

b
k

)
fN(k).

And its recursive algorithm
If U admits a discrete probability distribution then M =

∑N
i=1 Ui too

and

fM(k) =

GN (fU(0)) si k = 0
1

1−afU (0)

∑k
j=1

(
a + bj

k

)
fU(j)fM(k − j) si k ≥ 1

.

,
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Approximation 2:
Direct Fourier transform
inversion.

Fourier transform defintion
Let x 7→ g(x) be a real function, its Fourier transform is defined as

Lg(is) =

∫ +∞

0
eisxg(x)dx

Fourier transform inversion formula
If
∫ +∞
−∞ |Lg(is)|ds < +∞, and g is continuous and bounded then

g(x) =
1

2π

∫ +∞

−∞
e−isxLg(is)ds

,
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Apppproximation method 2:
Direct Fourier trasform inversion.

Consider

g(u) =

{
e−utψ(u) Si u ≥ 0

g(−u) Si u < 0
.

then

ψ(u) =
2eua

π

∫ +∞

0
cos(uy)< [Lψ(a + iy)] dy ,

and finally

ψ̃(u) =
2eua

π
h

{
1
2
< [Lψ(a)] +

+∞∑
k=1

cos(ukh)< [Lψ(a + ikh)]

}
.

,
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Approximation method 3:
Exponential moments.

I Approximation of the cumulating distribution function through a
mixed binomial distribution.

I Y is a continuous random variable, with values in [0,1] and
governed by PY .
↪→ Mixing parameter

Bn,PY (y) =

bnyc∑
k=0

∫ 1

0

(
n
k

)
zk (1− z)n−k dPY (z)

=

bnyc∑
k=0

(
n
k

)
E
[
Y k (1− Y )n−k]

=

bnyc∑
k=0

n∑
j=k

(
n
j

)(
j
k

)
(−1)j−kE

(
Y j)

,
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Méthode d’approximation 3:
Exponential moments

I The method is based on the following convergence result∫ 1

0

bnyc∑
k=0

(
n
k

)
zk (1− z)n−k dPY (z)→

∫ 1

0
1z<y dPY (z), n→ +∞

The cumulating distribution function is aproximated by

FY (y) ≈
bnyc∑
k=0

n∑
j=k

(
n
j

)(
j
k

)
(−1)j−kE

(
Y j) .

I X is R+-valued random variable.
↪→ Change of variable Y = e−cX where 0 < c < 1,

F X (x) ≈
bne−cxc∑

k=0

n∑
j=k

(
n
j

)(
j
k

)
(−1)j−kLX (−jc).

,
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Comparison:
Monte Carlo VS Polynomial
Example: Compound Poisson distribution [P(2), Γ(3,1)],

I Order of truncation: K=75⇒ 20 sec,
↪→ 600 000 Monte Carlo simulations.

,
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Comparison:
Monte Carlo VS Polynomials

,
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Statistical application:
Definition of the estimator
Let X1, . . . ,Xn be a sample of size n.

I The polynomial approximation of the PDF is given by

f K
X (x) = f K

X ,ν(x)fν(x) =
K∑

k=0

ak Qk (x)fν(x).

I The approximation formula turns into a PDF estimator

f̂ K
X (x) = f̂ K

X ,ν(x)f̂ν(x) =
K∑

k=0

âk Qk (x)f̂ν(x).

The statistical inference is a two-step procedure,

1. Parametrical estimation of the parameters of the reference
probability measure,

2. Nonparametric estimation of the coefficients of the polynomial
expansion.

,
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Statistical application:
Definition of the estimator
The coefficients of the polynomial are

an = E [Qk (X )] , k ∈ N.

Nonbisasedly estimated by

Zk =
1
n

n∑
i=1

Qk (Xi ), k = 1, . . . ,K ,

with associated variance denoted by σ2
k,n = V(Zk ).

I The coefficients of the polynomial expansion are estimated by

âk = wk Zk ,

where w = (w1, . . . ,wK ) is a modulator.
↪→ Allow an optimisation of the Integrated Mean Squared Error

(IMSE).

I We set K = n in what comes next.
,
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Statistical application:
IMSE

The Integrated Mean Squared Error is defined as

IMSE(f̂ n
X ,ν , fX ,ν) = E

∫ [
f̂X ,ν(x)− fX ,ν(x)

]2
dx

=
n∑

k=1

(1− wk )2a2
k +

+∞∑
k=n+1

a2
k

+
n∑

k=1

w2
k σ

2
k,n.

A modified version of the Integrated Mean Squared Error is optimized

EQMI(f̂ n
X ,ν , f

n
X ,ν) =

n∑
k=1

w2
k σ

2
k,n +

n∑
k=1

(1− wk )2a2
k .

,
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Statistical application:
IMSE

The quantities a2
k , et σ2

k,n are unbiasedly estimated through

σ̂2
k,n =

1
n(n − 1)

n∑
i=1

[Qk (Xi )− Zk ]2 , k = 1, . . . ,n,

â2
k = max

(
Z 2

k − σ̂2
k,n,0

)
, k = 1, . . . ,n.

The Integrated Mean Squared Error is estimated by

ÎMSE
(

f̂ n
X ,ν , f

n
X ,ν

)
=

n∑
k=1

w2
k σ̂

2
k,n +

n∑
k=1

(1− wk )2â2
k .
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Statistical application:
Subset Selection Modulator

MSSM denotes the Subset Selection class of modulator such that
w = (1, . . . ,1,0, . . . ,0).

I Computation of the IMSE ∀w ∈MSME .

Illustration: Estimation of the PDF of the Inverse Gaussian distribution
IG(λ, µ). The expression of the PDF is given by

fX (x) =


√

λ

x3 e
−λ(x−µ)2

2µ2x

√
2π

, x > 0,

0, Sinon.

I Distribution of the hitting time at a given level of a brownian
motion with drift,

I We set λ = 2, and µ = 4.

,
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Statistical application:
Visualization of the data

,
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Statitistical application:
IMSE

,
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Statistical application:
Sample’s size=10

,
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Statistical application:
Sample’s size=100

,
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Statistical application:
Sample’s size=500

,
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Statistical application:
Sample’s size=1 000

,
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Statistical application:
Compound distribution

I Aggregate claim amounts sample: (X1, . . . ,Xn),

I Claim frequency sample: (N1, . . . ,Nn),

I Claim amounts sample: (U1, . . . ,UN1 , . . . ,UN1+...+Nn ).

The size of the sample available for the aggregate claim amounts and
the claim frequencies may be small.

I More observations are available for the claim sizes.

,
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Statistical application:
Compound distribution

Full Parametric
I Adequacy statistical test to calibrate the model for claim sizes

and claim frequency,

I Statistical inference of the parameters,

I Approximation method.

,
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Statistical application:
Compound distribution

Full NonParametric
I Statistical inference of the parameters of the reference

dsitribution,
↪→ Using which sample?

I The coefficient of the polynomial expansion are estimated using
(X1, . . . ,Xn).

,
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Statistical application:
Compound distribution

Semi-Parametric
I Parametric model for the claim frequency.
I Statistical inference for the claim frequency model,

↪→ We use (N1, . . . ,Nn).

I The coefficients of the polynomial expansion are estimated using
(U1, . . . ,UN1 , . . . ,UN1+...+Nn ), and the recurence relationship that
often exists between the moments of X , N, et U.

,
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