Life insurance portfolio aggregation

Is it optimal to group policyholders by age, gender, and seniority for BEL computations based on model points?

Pierre-Olivier Goffard

Université Libre de Bruxelles pierre-olivier.goffard@ulb.ac.be

3rd European Actuarial Journal Conference, September 2016 September 8, 2016

Solvency II

- EU directive that codifies and harmonizes the EU prudential framework
 - $\,\hookrightarrow\,$ Amount of capital to reduce the risk of insolvency
- ▶ Enforcement on the 1st of January, 2016

Best Estimate Liability computations via stochastic ALM Cash-Flows Projection Model

- Capture the strong interaction between asset and liability
- Take into account the time value of options and guarantees

The Running Time issue

- Monte-Carlo simulations + Policy-by-policy approach
- AXA France participating contracts portfolio \Rightarrow 3 millions
 - $\,\hookrightarrow\,$ Cumbersome volume of computations

Executive Summary

What is a model point?

A two-step procedure

- Clustering algorithms used in the field data analysis group policies to yield the clustered portofolio
- An aggreation procedure build a representative contract for each group and yield the aggregated portfolio
- Aggregated portfolio of 4000 model points associated to relative error on the BEL of 0.05%
- Official AXA France Model Point building process since the closing of 2013

The Present Surrender Value of a participating contract

- {
 r_a(t)}_{t≥0} and {
 r_d(t)}_{t≥0} are stochastic processes governed by a
 probability measure ℙ_f that model respectively the accumulation
 and discounting rate
- Let **F** be a financial scenario drawn from \mathbb{P}_f

The Surrender Value

$$SV^{\mathsf{F}}(t) = SV(0) \times exp\left(\int_{0}^{t} r_{\mathsf{a}}(s) \mathrm{d}s\right),$$

The Present Surrender Value

$$\mathsf{PSV}^{\mathsf{F}}(t) = \mathsf{SV}^{\mathsf{F}}(t) \times \exp\left(-\int_{0}^{t} r_{d}(s) ds\right),$$

Let $\tau | \mathbf{F}$ be a continuous random variable that models the time of early surrender due to

- Death \Rightarrow Age and Gender of the policyholder
- \blacktriangleright Lapse \Rightarrow Seniority of the contract and financial scenario F

Let T be the term of the contract or end of the horizon of projection.

▶ The actual surrender time is $\tau | \mathbf{F} \land T = \min(\tau | \mathbf{F}, T)$ with probability measure

$$\mathrm{d}\mathbb{P}_{\tau|\mathbf{F}\wedge T}(t) = f_{\tau|\mathbf{F}}(t)\mathrm{d}\lambda(t) + \overline{F_{\tau}}(T)\delta_{T}(t)$$

Mean of the present value of the future exiting Cash-Flows weighted by their probability of occurence

Given a Financial Scenario F

$$BEL^{\mathbf{F}}(0, T) = \mathbb{E}\left[PSV\left(\tau | \mathbf{F} \wedge T\right)\right]$$
$$= \int_{0}^{T} SV(0) \times \exp\left[\int_{0}^{t} (r_{a}(s) - r_{d}(s)) ds\right] d\mathbb{P}_{\tau | \mathbf{F} \wedge T}(t)$$

Over a set of Financial Scenarios $(\mathbf{F}_1, \ldots, \mathbf{F}_N)$

$$BEL(0,T) = \frac{1}{N} \sum_{i=1}^{N} BEL^{\mathbf{F}_i}(0,T)$$

Approximation through a discretization of time

$$BEL^{\mathbf{F}}(0,T) \approx \left[\sum_{t=0}^{T-1} p(t,t+1) \prod_{k=0}^{t} \frac{1+r_a(k,k+1)}{1+r_d(k,k+1)}\right] SV(0) + \left[p(T) \prod_{k=0}^{T-1} \frac{1+r_a(k,k+1)}{1+r_d(k,k+1)}\right] SV(0),$$

where

- Time step equal to one year
- Horizon of projection equal to 30 years
- p(t, t + 1) is the probability of surrender between year t and t + 1
- p(T) is the probability to reach the end of projection year
- ► r_a(k, k + 1) and r_d(k, k + 1) denote the accumulation and discounting forward rate

BEL Computation of a portfolio (C_1, C_2)

Let C₁ and C₂ have identical probabilities of surrender over the years
 SV_{MP}(0) = SV_{C1}(0) + SV_{C2}(0)

Then

$$BEL_{MP}^{\mathbf{F}}(0,T) = \sum_{i=1}^{2} BEL_{C_i}^{\mathbf{F}}(0,T).$$

• Exact valuation of the BEL of the portfolio (C_1, C_2)

Getting as close as possible to this additivity property sounds like a good idea...

◆□> <□> <=> <=> <=> <=> <=> <=> <<=>

First Aggregation

Aggregation of contracts having

- Identical probabilities of surrender
- Identical ALM Group defined by features such as
 - Product Line
 - Benefit sharing features
 - Technical rate
 - ▶

Initial Portfolio				Portfolio After First Aggregation		
Maille ALM	Probability of Surrender	Initial Surrender Value		Maille ALM	Probability of Surrender	Initial Surrender Value
Grp_ALM_1	Vector_1	100	o>0	Grp_ALM_1	Vector_1	100
Grp_ALM_1	Vector_2	200	0	Grp_ALM_1	Vector_2	3280
Grp_ALM_1	Vector_3	50		Grp_ALM_1	Vector_3	50
Grp_ALM_1	Vector_2	80	0 >	Grp_ALM_2	Vector_4	5200
Grp_ALM_1	Vector_2	3000	0 70	Grp_ALM_2	Vector_5	40000
Grp_ALM_2	Vector_4	5000	• •	Grp_ALM_3	Vector_6	10250
Grp_ALM_2	Vector_4	200	0			
Grp_ALM_2	Vector_5	40000	0			
Grp_ALM_3	Vector_6	100	•			
Grp_ALM_3	Vector_6	700	0			
Grp_ALM_3	Vector_6	9000	0			

The Clustering Problem

Let

$$\mathcal{P} = {\mathbf{C}_i}_{i \in 1, \dots, n}$$

be a portfolio of contracts that belong to the same ALM Group

$$\mathbf{C}_{i} = \left(p_{i}(0,1), p_{i}(1,2), ..., p_{i}(T-1,T), p_{i}(T)\right),$$

characterized by their trajectory of surrender probabilities

- Giving up the financial dependency hypothesis
- Euclidean distance as dissimilarity measure
- AHC and K-MEANS Algorithm
- Weighting procedure based on the initial surrender value

$$w_{\mathbf{C}} = \frac{SV_{\mathbf{C}}(0)}{\sum_{\mathbf{C}\in\mathcal{P}}^{n}SV_{\mathbf{C}}(0)},$$

Similar to longitudinal data

A Meli-Melo of trajectories

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Constraint on the number of Model Points

- Allocation of a number of model points to each ALM Group with respect to their mathematical reserves
- K-Means algorithm is better suited
 - \hookrightarrow The number of clusters is a parameter
- The random initialization is problematic
 - $\,\hookrightarrow\,$ AHC to determine the initial centroid
- Idea Number of model points \Rightarrow Compromise between heterogeneity and mathematical reserve of the ALM Group

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Combination of AHC and K-Means Then BOOM!

きょう しょう かいしょう ふゆう ふりく

The problem reduces itself to assign the best characteristics to the MP The Simple Way

Weighted mean of the policyholder characteristics within the group

A Trickier One

- Generate every possible probability trajectories
- Compute the barycenter in each group
- Assign to the model point the characteristics leading to the trajectory which is closest to the barycenter

Overview of the Aggregation Process

Backtesting: Criteria and Figures

- $\blacktriangleright \ \mathcal{PF}_1$ denotes the aggregated portfolio after first aggregation
- *PF*₂ denotes the final aggregated portfolio with the barycenter method
- The relative error on the BEL is defined as

$$\frac{\textit{BEL}\left(\mathcal{PF}_2\right)-\textit{BEL}\left(\mathcal{PF}_1\right)}{\textit{BEL}\left(\mathcal{PF}_1\right)}$$

The compression rate is defined as

$$\frac{\textit{Card} (\mathcal{PF}_2) - \textit{Card} (\mathcal{PF}_1)}{\textit{Card} (\mathcal{PF}_1)}$$

Portfolio	Number of Contracts	BEL (millions of euros)
\mathcal{PF}_1	72 000	72 336
\mathcal{PF}_2	3 753	72 371

- ▶ A relative error of 0.0485% equivalent to 35 millions of euros
- ► A compression rate of -95% VS \mathcal{PF}_1 and -99.9% VS policy-by-policy

Global Error over the years of projection

Compression Rate VS Relative Error Product-by-Product

Relative Error on the BEL by Product Lines

Conclusion

- The aggregation procedure for participating contracts portfolios is very efficient
 - \hookrightarrow Easy to implement
 - $\,\hookrightarrow\,$ Theoretically based and efficient in practice
- The aggregation procedure plays a key role within the valuation process of AXA France as
 - It enables to do a full ALM valuation
 - It meets the expectations of the regulators

There are Rooms for Further Improvements

- Try dissimilarity measures better suited to the problem than the euclidean distance
- Link the level of error to the number of Model Points
- Find a compromise between heterogeneity and mathematical reserve to allocate the number of model points

On the Optimal Number of Clusters

20/23

Clustering Philosophy

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

K-Means Algorithm

- Step 1 Set the number of clusters
- Step 2 Random initialization of the centroids
- Step 3 Each individual is assigned to the closest centroid
- Step 4 Computations of new centroids
- Step 5 Repeat step 3 and 4 until convergence

Ascending Hierarchical Clustering Algorithm

- Step 1 Group the two policies that minimize the increase of the Within-Cluster Inertia and replace them with the barycenter
- Step 2 Repeat step 1 until only one group remains
- Step 3 Cut the tree

