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Executive summary

Work out a new numerical method to approximate ruin probabilities.

main idea

Polynomial expansion of a probability density function though orthogonal
projection
— Change of measure via Natural Exponential Family with Quadratic
Variance function

< Construction of a polynomial orthogonal system w.r.t this probability
measure

Achievement

Approximation of the ultimate ruin probability in the compound Poisson
ruin model with light tailed claim sizes
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Notations

dF is an univariate Probability Measure. Denote by
@ F its Cumulated Distribution Function,
@ f = F’ its Probability density Function w.r.t. a positive measure,
o F(h) = [e®dF(x) its Moment Generating Function,
e x(0) = In(F(6)) its Cumulant Generating Function,
L?(F) is a function space such that :
o If f € L*(F) then [ f2(x)dF(x) < cc.
L?(F) is a normed vector space :

IR =< f.f >= / F)dF ().
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Definition and hypothesis

Denote by {R(z);¢ > 0} the Risk Reserve Process :

N(@)
R(1) :u—l—pt—ZU,-,
i=1

where
@ u 1s teh initial reserves,
@ p is the constant premium rate per unit of time,
@ N(t) is an homogeneous Poisson process with intensity £,

@ {U;}ien- are ii.d. non-negative random variables, independant of N(z),
with CDF Fy; and mean pu.

Let {S();# > 0} be the Surplus process :
S(t) = u—R(1).
1 > 0 is the safety loading and one had better make sure that :

p=(1+mn)5p.
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C.P. Ruin Model

Risk and surplus processes visualization
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C.P. Ruin Model

Ultimate ruin probability

Denote by M = Sup{S(¢); t > 0}, the ultimate ruin probability is defined as :

() = P(M > u) = Fyy(u).

Pollaczek-Khinchine formula

In the compound Poisson ruin model, the ruin probability can be written as :

Ya) = (1-p Zp"F*"

Y F
SUL Ful) - / ob) g,
i=1 0

I

IS

M

where N is geometric with parameter p = B " < 1 and F}j; denotes the nth
convolution of Fy.

See Ruin probabilities par Asmussen et Albrecher (2001) [1].
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C.P. Ruin Model

Numerical evaluation of ruin probability : a brief review

@ Panjer’s algorithm, Panjer (1981) [8]
@ Laplace transform numerical inversion

— Fast Fourrier Transform, Embrecht et al. (1993) [5]
— Laguerre’s method, Weeks (1966) [10]

o Weighted sum of Gamma densities, Bowers (1966) [4]
— Beekman-Bowers Approximation, Beekman (1969) [3]
@ Monte-Carlo simulations method, Kaasik (2009) [6]
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NEF-QVF

Natural Exponential Families with Quadratic Variance

Function

Let dF be a univariate probability measure possessing MGF in a
Neighborhood of 0.

o {F,;u € M} is the NEF generated by dF, with :
dF,,(x) = expl(1)x — K(6(11)))dF ().
The variance function is said quadratic if :
V() = ap*+bu+c
The NEF-QVF contain six distribution :

o Normal @ Binomial
o Gamma ° N,egatl\,’e
Binomial

o H boli
YPErbotic @ Poisson
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NEF-

Orthogonal polynbmials for NEF-QVF Distributions

Define {F,; u € M} a NEF-QVF generated by dF with mean 4.
@ The PDF f(x, i), of a F,, w.r.t. dF is proportional to
exp(p(p)x — k(1))

1

gmm—wmﬂa

ol 510 b 105

is a polynomial of degree n in both 1 and x.
@ fx, o) =1let

n

0,(3) = 0s(rsp0) = V(o) { 5 1) |

8u" K=o

{Q,} is an orthogonal polynomials system such that :

<&@@Mb=/&@%@ﬁw=mW%r

For a full description of the NEF-QVF see Barndorf-Nielsen (1978) [2] et
Morris (1982) [7].
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NEF-QVF

Polynomial Expansion and Truncations

@ The polynomials are dense in L?(F).
< {Q.} is therefore an orthogonal basis of L*(F).
@ Let dFx be a probability measure associated to some random variable
X.
— ddL;‘ its density w.r.t. dFF
o If x € [2(F) we have :

dﬂ x) = d& On 0, (x) _ Qn(x)
ar nEZN< dF " 110, ~ 110l > E(0n(X)) .

@ The CDF FY is then :

I On(y)dF (y)
A5 '

Approximations are then obtained by truncation

[ Ou(y)dF (y)

FE(x) = E(Qu(X)) o
n=0 n
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NEF-QVF

Polynomial expansion for the ultimate ruin probability

Recall that M = SV | U then :

dFy(x) = (1 —p)do(dx)+ Zp"dF
= (1= p)do(dx) +dGu(x )-
If v ¢ [2(F) then :

Gy, \ dGu Qv _ Onx)
aF =2 <G o el

Integration leads to the polynomial expansion of the ruin probability :

dGy  Qn _ [ Qu(y)dF(y)
2 < led T T e

neN
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NEF-QVF

Approximation of the ruin probability though truncation of

the polynomial expansion

Approximation of the ultimate ruin probability

o {F,;u € M} is a NEF-QVF generated by F with 1,
o f(x,p) o< exp(¢d(p)x — k(¢())) is the PDF of F,, w.rt. F.
If %G ¢ J2(dF) then :

) = Vil e (Guto(u)]
n=0 H=Ho
0.0

X
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NEF-

Choice of the NEF-QVF

dG)y is a defective probability measure supported on [0, 4+00].
Among NEF-QVF, the only one suported on [0, +oo[ is generated by the
exponential distribution.

dF(x) = e~ %d\(x)
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—~ 1
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— €< 2y
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Numerical illustrations

Calibration des simulations

Regarding the ruin model, we assume that :
@ The premium rate p is equal to 1,
@ The safety loading 7 is equal to 20%.

A graphic visualisation is proposed, we plot the quantity :
A (u) = (u) — 5 (u),

for an intitial reserves u and a truncation order K.

— Different values for £ are tested with one equal to 7.
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Exponentially distributed claim sizes

Numerical illustrations
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Numerical illustrations
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Numerical illustrations
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Numerical illustrations

Comparison with Panjer’s algorithm

u | Exact Value | Polynomials expansion | Panjer’s algorithm
&=7,K=120 h=0.01
0.1 | 0.821313 0.821424 0.821356
1 0.736114 0.736238 0.736395
5 0.47301 0.472944 0.473757
10 0.274299 0.274252 0.275131
50 | 0.00352109 0.00352476 0.00357292
u | Monte-Carlo simulations | Polynomials expansion | Panjer’s algorithm
&=7,K=120 h=0.01
0.1 0.8 0.80505 0.805454
1 0.624 0.634979 0.636315
5 0.232 0.239601 0.241442
10 0.076 0.0712518 0.0723159
50 0 4.569555 x 1076 4.686 x 1076
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Conclusion

-+ An efficient numerical method
— An approximation as precise as one might want

+ Easy to understand and to implement
-+ No discretization of the claim sizes is needed
— Limited to light tailed distribution

Outlooks :
@ Theoritivcal sensitiveness study of the parameter £

@ Agregate claim amounts distribution, more general compound
distributions

@ Statistical extension
— Extension statistique

o Finite time ruin probability
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Numerical illustrations
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