A polynomial expansion to approximate ruin probabilities

P.O. Goffard¹ X. Guerrault² S. Loisel³ D. Pommerêt⁴

¹Axa France - Institut de mathématiques de Luminy Université de Aix-Marseille

²Axa France

³Institut de Sciences financières et d'assurance Université de Lyon, Université de Lyon 1

⁴Institut de mathématiques de Luminy Université de Aix-Marseille

September 2013 / CEQURA 2013 Junior Worshop

Sommaire

2 Compound Poisson ruin model

3 Natural Exponential Families with Quadratic Variance Function

Executive summary

Main goal

Work out a new numerical method to approximate ruin probabilities.

main idea

Polynomial expansion of a probability density function though orthogonal projection

- $\hookrightarrow \mbox{ Change of measure via Natural Exponential Family with Quadratic Variance function}$
- \hookrightarrow Construction of a polynomial orthogonal system w.r.t this probability measure

Achievement

Approximation of the ultimate ruin probability in the compound Poisson ruin model with light tailed claim sizes

< ロト < 同 ト < 三 ト < 三 ト

Notations

dF is an univariate Probability Measure. Denote by

- F its Cumulated Distribution Function,
- f = F' its Probability density Function w.r.t. a positive measure,
- $\widehat{F}(\theta) = \int e^{\theta x} dF(x)$ its Moment Generating Function,
- $\kappa(\theta) = ln(\widehat{F}(\theta))$ its Cumulant Generating Function,

 $L^2(F)$ is a function space such that :

• If $f \in L^2(F)$ then $\int f^2(x) dF(x) < \infty$.

 $L^2(F)$ is a normed vector space :

$$||f||^2 = \langle f, f \rangle = \int f^2(x) dF(x).$$

◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● ⑦ � ◎

Definition and hypothesis

Denote by $\{R(t); t \ge 0\}$ the Risk Reserve Process :

$$R(t) = u + pt - \sum_{i=1}^{N(t)} U_i,$$

where

- *u* is teh initial reserves,
- *p* is the constant premium rate per unit of time,
- N(t) is an homogeneous Poisson process with intensity β ,
- $\{U_i\}_{i \in \mathbb{N}^*}$ are **i.i.d.** non-negative random variables, independant of N(t), with CDF F_U and mean μ .

Let $\{S(t); t \ge 0\}$ be the Surplus process :

$$S(t) = u - R(t).$$

 $\eta > 0$ is the safety loading and one had better make sure that :

$$p = (1+\eta)\beta\mu.$$

Risk and surplus processes visualization

Ultimate ruin probability

Denote by $M = Sup\{S(t); t > 0\}$, the ultimate ruin probability is defined as :

$$\psi(u) = P(M > u) = \overline{F_M}(u).$$

Pollaczek-Khinchine formula

In the compound Poisson ruin model, the ruin probability can be written as :

$$\psi(u) = (1-\rho) \sum_{n=0}^{+\infty} \rho^n \overline{F_{U^I}^{*n}}(u),$$

$$M \stackrel{D}{=} \sum_{i=1}^N U_i^I, \qquad F_{U^I}(x) = \int_0^x \frac{\overline{F_U(y)}}{\mu} dy,$$

where *N* is geometric with parameter $\rho = \frac{\beta \mu}{p} < 1$ and $F_{U^{l}}^{*n}$ denotes the *n*th convolution of $F_{U^{l}}$.

See Ruin probabilities par Asmussen et Albrecher (2001) [1].

Numerical evaluation of ruin probability : a brief review

- Panjer's algorithm, Panjer (1981) [8]
- Laplace transform numerical inversion
 - → Fast Fourrier Transform, Embrecht et al. (1993) [5]
 - \rightarrow Laguerre's method, Weeks (1966) [10]
- Weighted sum of Gamma densities, Bowers (1966) [4]
 - → Beekman-Bowers Approximation, Beekman (1969) [3]
- Monte-Carlo simulations method, Kaasik (2009) [6]

Natural Exponential Families with Quadratic Variance Function

Let dF be a univariate probability measure possessing MGF in a Neighborhood of 0.

• $\{F_{\mu}; \mu \in \mathcal{M}\}$ is the NEF generated by dF, with :

$$dF_{\mu}(x) = \exp(\phi(\mu)x - \kappa(\phi(\mu)))dF(x).$$

The variance function is said quadratic if :

$$V(\mu) = a\mu^2 + b\mu + c$$

The NEF-QVF contain six distribution :

- Normal
- Gamma
- Hyperbolic

- Binomial
- Negative Binomial
- Poisson

Introduction C.P. Ruin Model NEF-QVF Numerical illustrations

Orthogonal polynomials for NEF-QVF Distributions

Define $\{F_{\mu}; \mu \in M\}$ a NEF-QVF generated by dF with mean μ_0 .

• The PDF $f(x, \mu)$, of a F_{μ} w.r.t. dF is proportional to $exp(\phi(\mu)x - \kappa(\phi(\mu)))$.

$$Q_n(x,\mu) = V^n(\mu) \left\{ \frac{\partial^n}{\partial \mu^n} f(x,\mu) \right\} / f(x,\mu),$$

is a polynomial of degree n in both μ and x.

• $f(x, \mu_0) = 1$ et

$$Q_n(x) = Q_n(x,\mu_0) = V^n(\mu_0) \left\{ \frac{\partial^n}{\partial \mu^n} f(x,\mu) \right\}_{\mu=\mu_0}$$

 $\{Q_n\}$ is an orthogonal polynomials system such that :

$$\langle Q_n(x), Q_m(x) \rangle = \int Q_n(x)Q_m(x)dF(x) = ||Q_n||^2\delta_{nm}.$$

For a full description of the NEF-QVF see Barndorf-Nielsen (1978) [2] et Morris (1982) [7]. Introduction C.P. Ruin Model NEF-QVF Numerical illustrations

Polynomial Expansion and Truncations

- The polynomials are dense in $L^2(F)$.
 - $\hookrightarrow \{Q_n\}$ is therefore an orthogonal basis of $L^2(F)$.
- Let dF_X be a probability measure associated to some random variable *X*.
 - $\hookrightarrow \frac{dF_X}{dF}$ its density w.r.t. dF
- If $\frac{dF_X}{dF} \in L^2(F)$ we have :

$$\frac{dF_X}{dF}(x) = \sum_{n \in \mathbb{N}} \langle \frac{dF_X}{dF}, \frac{\mathcal{Q}_n}{||\mathcal{Q}_n||} \rangle \frac{\mathcal{Q}_n(x)}{||\mathcal{Q}_n||} = \sum_{n \in \mathbb{N}} E(\mathcal{Q}_n(X)) \frac{\mathcal{Q}_n(x)}{||\mathcal{Q}_n||^2}.$$

• The CDF F_X is then :

$$F_X(x) = \sum_{n \in \mathbb{N}} E(Q_n(X)) \frac{\int_{-\infty}^x Q_n(y) dF(y)}{||Q_n||^2}.$$

Approximations are then obtained by truncation

$$F_X^K(x) = \sum_{n=0}^K E(Q_n(X)) \frac{\int_{-\infty}^x Q_n(y) dF(y)}{||Q_n||^2}.$$

P.O. Goffard

Polynomial expansion for the ultimate ruin probability

Recall that $M = \sum_{i=1}^{N} U_i^I$ then :

$$dF_M(x) = (1-\rho)\delta_0(dx) + (1-\rho)\sum_{n=1}^{+\infty} \rho^n dF_{U'}^{*n}(x)$$

= $(1-\rho)\delta_0(dx) + dG_M(x).$

If $\frac{dG_M}{dF} \in L^2(F)$ then :

$$\frac{dG_M}{dF}(x) = \sum_{n \in \mathbb{N}} < \frac{dG_M}{dF}, \frac{\mathcal{Q}_n}{||\mathcal{Q}_n||} > \frac{\mathcal{Q}_n(x)}{||\mathcal{Q}_n||}.$$

Integration leads to the polynomial expansion of the ruin probability :

$$\psi(u) = \sum_{n \in \mathbb{N}} < \frac{dG_M}{dF}, \frac{Q_n}{||Q_n||} > \frac{\int_u^{+\infty} Q_n(y) dF(y)}{||Q_n||}.$$

Approximation of the ruin probability though truncation of the polynomial expansion

Approximation of the ultimate ruin probability

- $\{F_{\mu}; \mu \in M\}$ is a NEF-QVF generated by F with μ_0 ,
- $f(x,\mu) \propto exp(\phi(\mu)x \kappa(\phi(\mu)))$ is the PDF of F_{μ} w.r.t. F.

If $\frac{dG_M}{dF} \in L^2(dF)$ then :

$$\psi^{K}(u) = \sum_{n=0}^{K} V_{F}(\mu_{0})^{n} \left[\frac{\partial^{n}}{\partial \mu^{n}} e^{-\kappa(\phi(\mu))} \left(\widehat{G}_{M}(\phi(\mu)) \right) \right]_{\mu=\mu_{0}}$$

$$\times \frac{\int_{u}^{+\infty} Q_{n}(y) dF(y)}{||Q_{n}(x)||^{2}}$$

 dG_M is a defective probability measure supported on $[0, +\infty[$. Among NEF-QVF, the only one suported on $[0, +\infty[$ is generated by the exponential distribution.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

The orthogonal polynomials linked to the exponential measure are the Laguerre ones, see Szegö (1939) [9]

- Which value for ξ to complete the integrability condition ?
- $\psi(u) \le e^{-\gamma u}$.

where γ is the unique positive solution to the following equation :

$$\widehat{F_{U^{I}}}(s) = \frac{1}{\rho}$$

$$\hookrightarrow \ \xi < 2\gamma$$

 dG_M is a defective probability measure supported on $[0, +\infty[$. Among NEF-QVF, the only one suported on $[0, +\infty[$ is generated by the exponential distribution.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

The orthogonal polynomials linked to the exponential measure are the Laguerre ones, see Szegö (1939) [9]

- Which value for ξ to complete the integrability condition ?
- ψ(u) ≤ e^{-γu}.
 where γ is the unique positive solution to the following equation :

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

$$\hookrightarrow \ \xi < 2\gamma$$

 dG_M is a defective probability measure supported on $[0, +\infty[$. Among NEF-QVF, the only one suported on $[0, +\infty[$ is generated by the exponential distribution.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

The orthogonal polynomials linked to the exponential measure are the Laguerre ones, see Szegö (1939) [9]

- Which value for ξ to complete the integrability condition ?
- ψ(u) ≤ e^{-γu}.
 where γ is the unique positive solution to the following equation :

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

(ロ)

$$\hookrightarrow \ \xi < 2\gamma$$

 dG_M is a defective probability measure supported on $[0, +\infty[$. Among NEF-QVF, the only one suported on $[0, +\infty[$ is generated by the exponential distribution.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

The orthogonal polynomials linked to the exponential measure are the Laguerre ones, see Szegö (1939) [9]

- Which value for ξ to complete the integrability condition ?
- $\psi(u) \leq e^{-\gamma u}$.

where γ is the unique positive solution to the following equation :

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

(ロ)

 $\hookrightarrow \xi < 2\gamma$

 dG_M is a defective probability measure supported on $[0, +\infty]$. Among NEF-QVF, the only one suported on $[0, +\infty]$ is generated by the exponential distribution.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

The orthogonal polynomials linked to the exponential measure are the Laguerre ones, see Szegö (1939) [9]

- Which value for ξ to complete the integrability condition?
- $\psi(u) < e^{-\gamma u}$.

where γ is the unique positive solution to the following equation :

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

 $\hookrightarrow \xi < 2\gamma$

(ロ)

Calibration des simulations

Regarding the ruin model, we assume that :

- The premium rate *p* is equal to 1,
- The safety loading η is equal to 20%.

A graphic visualisation is proposed, we plot the quantity :

$$\Delta \psi(u) = \psi(u) - \psi^{K}(u),$$

for an intitial reserves u and a truncation order K.

 \hookrightarrow Different values for ξ are tested with one equal to γ .

Exponentially distributed claim sizes

$$f_U(x) = e^{-x} \mathbf{1}_{\mathbb{R}^+}(x)$$

16/20

Introduction C.P. Ruin Model NEF-QVF Numerical illustrations

$\Gamma(1/2, 1/2)$ distributed claimsizes

$$f_U(x) = rac{e^{-x/2}}{\Gamma(1/2)\sqrt{2x}} \mathbf{1}_{\mathbb{R}^+}(x)$$

P.O. Goffard

17/20

Introduction C.P. Ruin Model NEF-QVF Numerical illustrations

$\Gamma(1/3,1)$ distributed claimsizes

$$f_U(x) = \frac{e^{-x}x^{-2/3}}{\Gamma(1/3)} \mathbf{1}_{\mathbb{R}^+}(x)$$

P.O. Goffard

^{18/20}

Comparison with Panjer's algorithm

u	Exact Value	Polynomials expansion	Panjer's algorithm
		$\xi = \gamma$, K=120	h=0.01
0.1	0.821313	0.821424	0.821356
1	0.736114	0.736238	0.736395
5	0.47301	0.472944	0.473757
10	0.274299	0.274252	0.275131
50	0.00352109	0.00352476	0.00357292

u	Monte-Carlo simulations	Polynomials expansion	Panjer's algorithm
		$\xi = \gamma$, K=120	h=0.01
0.1	0.8	0.80505	0.805454
1	0.624	0.634979	0.636315
5	0.232	0.239601	0.241442
10	0.076	0.0712518	0.0723159
50	0	$4.569555 imes 10^{-6}$	$4.686 imes10^{-6}$

Conclusion

- + An efficient numerical method
 - \hookrightarrow An approximation as precise as one might want
- + Easy to understand and to implement
- + No discretization of the claim sizes is needed
- Limited to light tailed distribution

Outlooks :

- Theoritivcal sensitiveness study of the parameter ξ
- Agregate claim amounts distribution, more general compound distributions
- Statistical extension
 - \rightarrow Extension statistique
- Finite time ruin probability

くロト (同下) ヨト (ヨト)

э.

S. Asmussen and H. Albrecher.

Ruin Probabilities, volume 14 of *Advanced Series on Statistical Science Applied Probability*. World Scientific, 2010.

O. Barndorff-Nielsen.

Information and exponential Families in Statistical Theory. Wiley, 1978.

J.A. Beekman.

Ruin function approximation.

Transaction of society of actuaries, 21(59 AB) :41-48, 1969.

N.L. Bowers.

Expansion of probability density functions as a sum of gamma densities with applications in risk theory.

Transaction of society of actuaries, 18(52):125-137, 1966.

- P. Embrechts, P. Grübel, and S. M. Pitts.

Some applications of the fast fourrier transform algorithm in insurance mathematics.

(ロ)

Statistica Neerlandica, 41:59–75, March. 1993.

A. Kaasik.

Estimating ruin probabilities in the Cramér-Lundberg model with heavy-tailed claims.

Mathematical statistics, University of Tartu, Tartu, October 2009.

Carl N. Morris.

Natural exponential families with quadratic variance functions. *The Annals of Mathematical Statistics*, 10(1):65–80, 1982.

H. H. Panjer.

Recursive evaluation of a family of compound distributions. *Astin Bulletin*, 12(1):22–26, 1981.

G. Szegö.

Orthogonal Polynomials, volume XXIII.

American mathematical society Colloquium publications, 1939.

W. T. Weeks.

Numerical inversion of laplace transforms using laguerre functions. *Journal of the ACM*, 13(3) :419–429, 1966.

э.