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Executive summary

Main goal

Work out a new numerical method to approximate ruin probabilities.

main idea
Polynomial expansion of a probability density function though orthogonal
projection
↪→ Change of measure via Natural Exponential Family with Quadratic

Variance function
↪→ Construction of a polynomial orthogonal system w.r.t this probability

measure

Achievement
Approximation of the ultimate ruin probability in the compound Poisson
ruin model with light tailed claim sizes
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Notations

dF is an univariate Probability Measure. Denote by
F its Cumulated Distribution Function,
f = F′ its Probability density Function w.r.t. a positive measure,
F̂(θ) =

∫
eθxdF(x) its Moment Generating Function,

κ(θ) = ln(F̂(θ)) its Cumulant Generating Function,
L2(F) is a function space such that :

If f ∈ L2(F) then
∫

f 2(x)dF(x) <∞.
L2(F) is a normed vector space :

||f ||2 =< f , f >=

∫
f 2(x)dF(x).

P.O. Goffard 4/20



5/20

Introduction C.P. Ruin Model NEF-QVF Numerical illustrations

Definition and hypothesis

Denote by {R(t); t ≥ 0} the Risk Reserve Process :

R(t) = u + pt −
N(t)∑
i=1

Ui,

where
u is teh initial reserves,
p is the constant premium rate per unit of time,
N(t) is an homogeneous Poisson process with intensity β,
{Ui}i∈N∗ are i.i.d. non-negative random variables, independant of N(t),
with CDF FU and mean µ.

Let {S(t); t ≥ 0} be the Surplus process :

S(t) = u− R(t).

η > 0 is the safety loading and one had better make sure that :

p = (1 + η)βµ.
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Risk and surplus processes visualization
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Ultimate ruin probability

Denote by M = Sup{S(t); t > 0}, the ultimate ruin probability is defined as :

ψ(u) = P(M > u) = FM(u).

Pollaczek-Khinchine formula
In the compound Poisson ruin model, the ruin probability can be written as :

ψ(u) = (1− ρ)

+∞∑
n=0

ρnF∗nUI (u),

M D
=

N∑
i=1

UI
i , FUI (x) =

∫ x

0

FU(y)

µ
dy,

where N is geometric with parameter ρ = βµ
p < 1 and F∗nUI denotes the nth

convolution of FUI .

See Ruin probabilities par Asmussen et Albrecher (2001) [1].
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Numerical evaluation of ruin probability : a brief review

Panjer’s algorithm, Panjer (1981) [8]
Laplace transform numerical inversion
→ Fast Fourrier Transform, Embrecht et al. (1993) [5]
→ Laguerre’s method, Weeks (1966) [10]

Weighted sum of Gamma densities, Bowers (1966) [4]
→ Beekman-Bowers Approximation, Beekman (1969) [3]

Monte-Carlo simulations method, Kaasik (2009) [6]
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Natural Exponential Families with Quadratic Variance
Function

Let dF be a univariate probability measure possessing MGF in a
Neighborhood of 0.

{Fµ;µ ∈M} is the NEF generated by dF, with :

dFµ(x) = exp(φ(µ)x− κ(φ(µ)))dF(x).

The variance function is said quadratic if :

V(µ) = aµ2 + bµ+ c

The NEF-QVF contain six distribution :

Normal
Gamma
Hyperbolic

Binomial
Negative
Binomial
Poisson
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Orthogonal polynomials for NEF-QVF Distributions

Define {Fµ;µ ∈ M} a NEF-QVF generated by dF with mean µ0.
The PDF f (x, µ), of a Fµ w.r.t. dF is proportional to
exp(φ(µ)x− κ(φ(µ))).

Qn(x, µ) = Vn(µ)

{
∂n

∂µn f (x, µ)

}
/f (x, µ),

is a polynomial of degree n in both µ and x.
f (x, µ0) = 1 et

Qn(x) = Qn(x, µ0) = Vn(µ0)

{
∂n

∂µn f (x, µ)

}
µ=µ0

.

{Qn} is an orthogonal polynomials system such that :

< Qn(x),Qm(x) >=

∫
Qn(x)Qm(x)dF(x) = ||Qn||2δnm.

For a full description of the NEF-QVF see Barndorf-Nielsen (1978) [2] et
Morris (1982) [7].
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Polynomial Expansion and Truncations

The polynomials are dense in L2(F).
↪→ {Qn} is therefore an orthogonal basis of L2(F).

Let dFX be a probability measure associated to some random variable
X.
↪→ dFX

dF its density w.r.t. dF

If dFX
dF ∈ L2(F) we have :

dFX

dF
(x) =

∑
n∈N

<
dFX

dF
,

Qn

||Qn||
>

Qn(x)

||Qn||
=
∑
n∈N

E(Qn(X))
Qn(x)

||Qn||2
.

The CDF FX is then :

FX(x) =
∑
n∈N

E(Qn(X))

∫ x
−∞ Qn(y)dF(y)

||Qn||2
.

Approximations are then obtained by truncation

FK
X (x) =

K∑
n=0

E(Qn(X))

∫ x
−∞Qn(y)dF(y)

||Qn||2
.
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Polynomial expansion for the ultimate ruin probability

Recall that M =
∑N

i=1 UI
i then :

dFM(x) = (1− ρ)δ0(dx) + (1− ρ)

+∞∑
n=1

ρndF∗nUI (x)

= (1− ρ)δ0(dx) + dGM(x).

If dGM
dF ∈ L2(F) then :

dGM

dF
(x) =

∑
n∈N

<
dGM

dF
,

Qn

||Qn||
>

Qn(x)

||Qn||
.

Integration leads to the polynomial expansion of the ruin probability :

ψ(u) =
∑
n∈N

<
dGM

dF
,

Qn

||Qn||
>

∫ +∞
u Qn(y)dF(y)

||Qn||
.
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Approximation of the ruin probability though truncation of
the polynomial expansion

Approximation of the ultimate ruin probability

{Fµ;µ ∈ M} is a NEF-QVF generated by F with µ0,
f (x, µ) ∝ exp(φ(µ)x− κ(φ(µ))) is the PDF of Fµ w.r.t. F.

If dGM
dF ∈ L2(dF) then :

ψK(u) =

K∑
n=0

VF(µ0)n
[
∂n

∂µn e−κ(φ(µ))
(

ĜM(φ(µ))
)]

µ=µ0

×
∫ +∞

u Qn(y)dF(y)

||Qn(x)||2
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Choice of the NEF-QVF

dGM is a defective probability measure supported on [0,+∞[.
Among NEF-QVF, the only one suported on [0,+∞[ is generated by the
exponential distribution.

dF(x) = ξe−ξxdλ(x)

The orthogonal polynomials linked to the exponential measure are the
Laguerre ones, see Szegö (1939) [9]

Which value for ξ to complete the integrability condition ?
ψ(u) ≤ e−γu.
where γ is the unique positive solution to the following equation :

F̂UI (s) =
1
ρ

↪→ ξ < 2γ
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Calibration des simulations

Regarding the ruin model, we assume that :
The premium rate p is equal to 1,
The safety loading η is equal to 20%.

A graphic visualisation is proposed, we plot the quantity :

∆ψ(u) = ψ(u)− ψK(u),

for an intitial reserves u and a truncation order K.

↪→ Different values for ξ are tested with one equal to γ.

P.O. Goffard 15/20



16/20

Introduction C.P. Ruin Model NEF-QVF Numerical illustrations

Exponentially distributed claim sizes

fU(x) = e−x1R+(x)
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Γ(1/2, 1/2)distributedclaimsizes

fU(x) =
e−x/2

Γ(1/2)
√

2x
1R+(x)
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Γ(1/3, 1)distributedclaimsizes

fU(x) =
e−xx−2/3

Γ(1/3)
1R+(x)
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Comparison with Panjer’s algorithm

u Exact Value Polynomials expansion Panjer’s algorithm
ξ = γ, K=120 h=0.01

0.1 0.821313 0.821424 0.821356
1 0.736114 0.736238 0.736395
5 0.47301 0.472944 0.473757

10 0.274299 0.274252 0.275131
50 0.00352109 0.00352476 0.00357292

u Monte-Carlo simulations Polynomials expansion Panjer’s algorithm
ξ = γ, K=120 h=0.01

0.1 0.8 0.80505 0.805454
1 0.624 0.634979 0.636315
5 0.232 0.239601 0.241442

10 0.076 0.0712518 0.0723159
50 0 4.569555× 10−6 4.686× 10−6
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Conclusion

+ An efficient numerical method
↪→ An approximation as precise as one might want

+ Easy to understand and to implement
+ No discretization of the claim sizes is needed
− Limited to light tailed distribution

Outlooks :
Theoritivcal sensitiveness study of the parameter ξ
Agregate claim amounts distribution, more general compound
distributions
Statistical extension
→ Extension statistique

Finite time ruin probability
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