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Abstract

The probability of successfully spending twice the same bitcoins is considered.

A double-spending attack consists in issuing two transactions transferring the

same bitcoins. The first transaction, from the fraudster to a merchant, is

included in a block of the public chain. The second transaction, from the

fraudster to himself, is recorded in a block that integrates a private chain,

exact copy of the public chain up to substituting the fraudster-to-merchant

transaction by the fraudster-to-fraudster transaction. The double-spending

hack is completed once the private chain reaches the length of the public chain,

in which case it replaces it. The growth of both chains are modeled by two

independent counting processes. The probability distribution of the time at

which the malicious chain catches up with the honest chain, or equivalently

the time at which the two counting processes meet each other, is studied. The

merchant is supposed to await the discovery of a given number of blocks after

the one containing the transaction before delivering the goods. This grants a

head start to the honest chain in the race against the dishonest chain.
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statistic point processes; renewal processes; boundary crossing problems
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1. Introduction

Bitcoin is a decentralized peer-to-peer (P2P) payment system that relies on Proof of

Work (PoW). Electronic payments are performed by issuing transactions that transfers
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Bitcoins (BTCs) between Bitcoin peers. These transactions are broadcast to a network

of Bitcoin miners. These miners will compete to solve a cryptographic puzzle in order

to build a block that contains the pending transactions. The first miner to solve

the problem receives a certain number of BTCs, which is agreed upon by everyone

in the network. At the time of the writing, this bounty is 12.5 BTCs; this value

is halved every 210,000 blocks. The block is then included in the blockchain which

plays the part of a public ledger recording all the transactions between bitcoin peers.

Once a transaction enters the blockchain, it is considered validated. The only way

to reverse the process, and for instance replace this transaction by another one, is to

redo the work of the associated block and all the subsequent blocks. The blockchain

allows in theory to prevent from double-spending the same BTCs. A double-spending

attack consists in buying a good from a vendor and transfering the same bitcoins to

oneself. Two conflicting transactions exist then in the network. The buyer-to-vendor

transaction is included in the blockchain by the honest miners while a group of colluding

miners work on their own private branch, exact replication of the principal chain up

to substituting the buyer-to-vendor transaction by the buyer to buyer one. In the

presence of two versions of the blockchain, the network always opts for the longest

because more computational effort has been put into it. If the conspiring miners’ chain

ever becomes as long as the honest chain, it will replace it. The double-spending is

then successful.

Satoshi Nakamoto stressed in his whitepaper [28] that a successful double-spending

attack is rather unlikely as long as the pool of honest miners retains the majority of

the computing power. The vendor is advised to wait for a certain number of blocks,

say k ∈ N, to be added to the chain before delivering the good. Assuming that, in

the meantime, the attackers manage to discover l < k blocks, then the honest chain

is ahead by z = k − l. The case l ≥ k implies that double-spending occurs right

away. The derivation of the probability of a successful double-spending attack relies

on an analogy with the one-sided gambler’s ruin problem. Namely, the forthcoming

block belongs to the honest chain with probability p or to the malicious chain with

probability q = 1−p. The difference between the length of the chains is then a random
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walk {Zn, n ∈ N} on Z defined as

Zn = z + Y1 + . . .+ Yn, for n ∈ N, (1)

where the Yi’s are the independent and identically distributed (i.i.d.) steps of the

random walk. Assuming that the honest miners have more resources implies that

p > q, the probability that the malicious chain ever catches up with the honest one,

given it is z blocks behind, is (q/p)z. For a full treatment of the gambler’s ruin problem,

the reader is refered to the monograph of Asmussen and Albrecher [2].

The aim of this work is to refine the model underlying the double-spending prob-

lem. Counting processes are introduced to keep track of the number of blocks in the

competing chains. These processes are generated by sequences of arrival times whose

probability distribution reflect the block discovery frequency and the distribution of the

computing power among honests and malicious miners. The probability distribution

of the time at which the malicious chain overtakes (if it ever does) the honest chain is

studied. Note that the probability mass function (p.m.f.) of the stopping time

τz = inf{n ∈ N ; Zn = 0}

in Nakamoto’s framework is a consequence of the first hitting time theorem with

P (τz = n) =
z

n
P(Zn = 0), for n ≥ z, (2)

see for instance Van Der Hofstad and Keane [20, Theorem 1] and the references therein.

Let {N(t) , t ≥ 0} and {M(t) , t ≥ 0} be two independent counting processes governing

the block arrival over time in the honest and the malicious chain respectively. Assume

that the honest chain is z ≥ 1 blocks ahead of the malicious chain at t = 0. Consider

the stopping time

τz = inf{t ≥ 0 ; M(t) = z +N(t)}. (3)

at which the double spending attack is successful. Denote by {Tk , k ≥ 1} and

{Sk , k ≥ 1} the block arrival times in the honest and malicious chain respectively.

Figure 1 illustrates the race between the two processes. The distribution of τz is

studied for different sets of assumptions over the counting processes {N(t) , t ≥ 0}
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Figure 1: Time until the double-spending attack is completed: (solid) length of the

honest chain {z+N(t) , t ≥ 0}, (dashed) length of the malicious chain {M(t) , t ≥ 0}.

and {M(t) , t ≥ 0}.

In Section 2 and 3, the length of the honest chain {z + N(t) , t ≥ 0} is driven by

an Order Statistic Point Process (OSPP), that is, provided that N(t) = n, the jump

times T1, . . . , Tn have the same distribution as the order statistics of a sample of n

i.i.d. random variables concentrated on [0, t] with distribution function Ft. In Section

2, the probability density function (p.d.f.) of τz is derived in terms of Abel-Gontcharov

(A-G) polynomials when the length of the malicious chain {M(t) , t ≥ 0} is a renewal

process (i.e. generated by i.i.d. inter-arrival times). In Section 3, the survival function

(s.f.) of τz is expressed in terms of Appell polynomials in the case where {M(t) , t ≥ 0}

is an OSPP.

The probability of a successful double-spending attempt, defined by P(τz < ∞), is

further considered. An upper-bound is derived in Section 4 when both {N(t) , t ≥ 0}

and {M(t) , t ≥ 0} are renewal processes. An exact expression is obtained when

{N(t) , t ≥ 0} is a Poisson process.

The formulas derived in this work hold for a fixed value z. In practice, because the

length of the dishonest chain is unknown to the vendor at the time of the shipping, the
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delay should be modelled as an integer-valued random variable Z. Nakamoto [28] let Z

be Poisson distributed with parameter z qp (that is, the average number of blocks mined

in the malicious chain when k blocks have been mined in the honest chain). Rosenfeld

[33] stressed in his analysis that the right distribution is the negative binomial one.

The distribution of the double spending time follows from inserting the formulas given

below in the law of total probability after conditionning upon the possible values of Z.

The determination of the distribution of Z might not be an easy task in the general

case and should be considered for further investigation.

Nakamoto [28] assumed that double spending occurs when the length of the malicious

chain reaches exactly the length of the honest chain. The situation in which two chains

of the same length coexist in the network is called a fork. The situation resolves as

soon as a block is added to either one of the two chains. Some authors, including

Rosenfeld [33] for instance, argued that the double spending time should be defined as

τ+
z = inf{t ≥ 0 ; M(t) = N(t) + z + 1}. The results obtained in this paper apply in

this context by noting that τ+
z = τz+1 almost surely.

Nakamoto [28] did not state explicitly that the block arrival is dictated by a homoge-

neous Poisson process. However, the probability of a successful double-spending attack,

as we will see later, when the length of the public and private chains are governed by

two Poisson processes of intensity λ and µ, is given by (µ/λ)z. Hence, the intensities

play the same role as p and q as they reflect the hashrate of the miners. Every single

result given in this work holds when the rival chains are modeled by homogeneous

Poisson process because the homogeneous Poisson process is the one and only renewal

process enjoying the order statistic property. The formulas, which may seem involved

in the general cases, simplify when the arrival of blocks is Poisson. Now, is it worth

considering more sophisticated models to track the growth of the blockchains?

A statistical study over the inter-block times was conducted in a recent work of Bowden

et al. [8]. The authors collected the timestamp information in the header of the

blocks. As pointed out in [8], the timestamp information cannot be readily used, and

preprocessing it represents quite a challenge in itself. The data after preprocessing is
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available on Rhys Bowden Github repository [7]. The empirical mean of the interblock

time is 9.41 minutes while the standard deviation is 11.05 minutes. The high variance

of the inter-block time is a known flaw which impedes the consistent flow of validated

transactions. Renewal processes allow us to capture higher order momentsby choosing

a more flexible probability distribution to fit the inter block time data. To the time

required for the creation of a block is sometimes added a propagation delay. A newly

discovered block is appended to the chain only once the word about that block has

been spread to the entire network. If it is accepted that the block mining time is

an exponential random variable, the actual time at which the block integrates the

chain is an exponential random variable perturbed by another non-negative noise. The

result may or may not be exponentially distributed. One of the many takeaways of

Bowden et al. [8] was that the rate at which blocks are discovered varies over time

according to the adjustment of the cryptopuzzles difficulty. The authors of [8] proposed

different models allowing for a time-dependent discovery rate with deterministic or

even random difficulty adjustment. When the difficulty adjustment is deterministic

then a non-homogeneous Poisson process is suitable. This is fortunate as the non-

homogeneous Poisson process is a particular instance of OSPP. The point processes

having the order statistic property have been characterized a while ago by Puri [32].

The OSPPs are either mixed Poisson processes up to a timescale transformation or

mixed sample processes. This class encompasses classical point processes such as the

mixed Poisson process, the non-homogeneous Poisson process, the linear birth process

with immigration and the linear death process.

From a mathematical standpoint, this work ressembles an early work of Picard and

Lefèvre [31] where the probability distribution of the first rendez-vous time between

two counting processes was derived in terms of the Appell and A-G polynomials.

The definition of the stopping time is slightly different in the case considered here.

Plus, the reasoning differs as it relies extensively on the order statistic property and

the connection between the aforementionned families of polynomials and the order

statistics joint distribution. It is more in the spirit of Goffard and Lefèvre [17] where

the crossing problem of an OSPP through a moving boundary was treated. These

arguments are inspired from risk theory when solving the ruin problem in ordered risk
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models, see e.g. Lefèvre and Picard [24, 25], Ignatov and Kaishev [21], Dimitrova et

al. [10], Goffard and Lefèvre [18], and Goffard [15]. To the best of my knowledge, the

closest link to queueing theory is the single server queue with either work or customer

removal introduced by Gelenbe et al. [13] and further considered in Boucherie and

Boxma [5], Jain and Sigman [22], and Harrison and Pitel [19] for different queues.

The related risk process includes lump addition, see Boucherie et al. [6]. In Perry et

al. [29, 30], renewal-type arguments were used to study the distribution of boundary

crossing times of the difference between two Poisson processes and linear boundaries.

Regarding the evaluation of the probability of a successful double-spending attack,

P(τz < ∞), the first step consists in swapping the role of time and space. Namely, a

correspondence is established between the ruin times of two risk models with inverted

characteristics. This trick is now standard in risk theory, see for instance Mazza and

Ruillère [27], Dickson and Borovkov [4], Shi and Landriault [35], Dimitrova et al. [11],

and Goffard and Lefèvre [18]. A classical martingale approach allows us to derive an

expression of the probability of successfully spending twice the sames BTCs.

The rest of the paper is organized as follows, in Section 2 a formula for the p.d.f. of τz

when {N(t) , t ≥ 0} is an OSPP and {M(t) , t ≥ 0} is a renewal process is derived in

terms of Abel-Gontcharov polynomials. In Section 3, a formula for the s.f. of τz when

both {N(t) , t ≥ 0} and {M(t) , t ≥ 0} are OSPPs is provided in terms of Appell

polynomials. Section 4 is concerned with the probability of the double-spending attack

ever being successful. Section 5 is devoted to numerical illustrations.

2. The p.d.f. of the double-spending time

In this section, the length of the honest chain {z +N(t) , t ≥ 0} is governed by an

OSPP. Its jump times, provided that N(t) = n, have the same joint distribution as a

vector of order statistics. Namely, it holds that

[T1, . . . , Tn|N(t) = n]
D
= (V1:n, . . . , Vn:n), (4)

where
D
= stands for equality in distribution and V1:n, . . . , Vn:n correspond to the order

statistics of n i.i.d. random variables having a c.d.f. Ft(s), for 0 ≤ s ≤ t. The length

of the malicious chain is a renewal process generated by a sequence of i.i.d. inter-
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arrival times {∆S
k , k ≥ 1} having a p.d.f. denoted by f∆S . The sequence of arrival

times {Sn , n ∈ N}, with the convention S0 = 0, corresponds to the partial sums of

the inter-arrival times sequence. The p.d.f. of Sn, for n ∈ N, is given by

fSn(t) = f∗n∆S (t), for t ≥ 0, (5)

where f∗n denote the n-fold convolution of f∆S with itself. Let z ≥ 1 be an integer,

the following result gives a formula for the p.d.f. of

τz = inf{t ≥ 0 ; M(t) = N(t) + z},

time at which the double-spending attack is completed.

Theorem 1. If {N(t) , t ≥ 0} is an OSPP and {M(t) , t ≥ 0} is a renewal process

then the p.d.f. of τz is given by

fτz (t) = E
[
(−1)N(t)hN(t)(t, z)f

∗[N(t)+z]

∆S (t)
]
, t ≥ 0, (6)

where

hn(t, z) = E
{
Gn
[
0
∣∣Ft(Sz), . . . , Ft(Sn+z−1)

] ∣∣∣Sn+z = t
}
, (7)

and Gn(0|.) is an A-G polynomial such as defined in the Appendix A.

Proof. The event {τz ∈ (t, t+dt)}, for t ≥ 0, corresponds to the exact time at which

the double-spending attack is successful as the malicious chain takes over the honest

one. At time t = 0, the honest chain is ahead by z ≥ 1 blocks. Assuming that later, at

time t > 0, the honest miners manage to add N(t) = n ∈ N blocks to the chain then

the malicious chain must be of length M(t−) = n + z − 1 at some time t− < t and

jumps to the level n + z exactly at t. Conditioning over the values of {N(t) , t ≥ 0}

yields

{τz ∈ (t, t+ dt)} =

+∞⋃
n=0

{τz ∈ (t, t+ dt)} ∩ {N(t) = n}. (8)

In the case where N(t) = 0, the only requirement is that the zth jump of {M(t) , t ≥ 0}

occurs at time t. It then follows that

{τz ∈ (t, t+ dt)} ∩ {N(t) = 0} = {Sz ∈ (t, t+ dt)} ∩ {N(t) = 0}, (9)

and consequently

fτz|N(t)=0(t) = f∗z∆S (t), t ≥ 0, (10)
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where fτz|N(t)=0(t) denotes the conditional p.d.f. of τz given that N(t) = 0. On

the set {N(t) ≥ 1}, one needs to make sure that {M(t) , t ≥ 0} behaves properly by

constraining its jump times so that it does not reach N(s) + z at any time s < t and

performs the (n+ z)th jump at t. Hence, it holds that

{τz ∈ (t, t+dt)}∩{N(t) ≥ 1} =

+∞⋃
n=1

n⋂
k=1

{Tk ≤ Sz+k−1}∩{Sz+n ∈ (t, t+dt)}∩{N(t) = n}.

Applying the law of total probability yields

P ({τz ∈ (t, t+ dt)} ∩ {N(t) ≥ 1})

=

+∞∑
n=1

P

[
n⋂
k=1

{Tk ≤ Sz+k−1} ∩ {Sz+n ∈ (t, t+ dt)}
∣∣∣N(t) = n

]
P[N(t) = n].(11)

In virtue of the order statistic property, the successive jump times (T1, . . . , Tn) are

distributed as the order statistics (V1:n, . . . , Vn:n) of a sample of n i.i.d. random

variables with c.d.f. Ft(s), 0 ≤ s ≤ t. The conditional probability in (11) may be

rewritten as

P

[
n⋂
k=1

{Vk:n ≤ Sz+k−1} ∩ {Sz+n ∈ (t, t+ dt)}

]

= P

[
n⋂
k=1

{Uk:n ≤ Ft(Sz+k−1)} ∩ {Sz+n ∈ (t, t+ dt)}

]

= P

[
n⋂
k=1

{Uk:n ≤ Ft(Sz+k−1)}
∣∣Sz+n ∈ (t, t+ dt)

]
P[Sz+n ∈ (t, t+ dt)]

= E
{

(−1)nGn[0
∣∣Ft(Sz), . . . , Ft(Sz+n−1)]

∣∣Sz+n ∈ (t, t+ dt)
}
P[Sz+n ∈ (t, t+ dt)],

(12)

where U1:n, . . . , Un:n denote the order statistics of a sample of n i.i.d. uniform random

variables on [0, 1], and Gn(.|.) correspond to the sequence of A-G polynomials as

defined in the Appendix A. Inserting (12) into (11) and letting dt be small enough

yields

fτz|N(t)≥1(t) =

+∞∑
n=1

E
{

(−1)nGn[0
∣∣Ft(Sz), . . . , Ft(Sz+n−1)]

∣∣Sz+n = t
}

× fSz+n(t)P[N(t) = n].
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The final step consists in noting that G0(x) = 1 for every x ∈ R, and writing

fτz (t) =

+∞∑
n=0

E
{

(−1)nGn[0
∣∣Ft(Sz), . . . , Ft(Sz+n−1)]

∣∣Sz+n = t
}
f
∗(z+n)

∆S (t)P[N(t) = n],

(13)

which is equivalent to the announced result (6). �

The stopping time τz may be interpreted as the first meeting time of the OSPP

{N(t), t ≥ 0)} and the lower randomized boundary defined by {M(t) − z, t ≥ 0}.

This remark explains why Theorem 1 is reminiscent of the results given in Goffard and

Lefèvre [17, Proposition 3.1] and Goffard and Lefèvre [18, Theorem 3.1], where the first-

meeting problem of an OSPP with a lower deterministic boundary was handled. The

numerical evaluations of (6), to compute for instance the probability that the double-

spending attack succeed within a fixed time period, looks challenging. A method based

on the truncation of the infinite series in (13) coupled with a numerical integration

routine, in the same vein as what was proposed in Borovkov and Dickson [4], can

be put together. The next result shows how formula (6) may be simplified when

{N(t) , t ≥ 0} is a mixed Poisson process.

Corollary 1. If {N(t) , t ≥ 0} is a mixed Poisson process then the p.d.f. of τz is

given by

fτz (t) = E
[

z

z +N(t)
f
∗[N(t)+z]

∆S (t)

]
, for t ≥ 0. (14)

Proof. As {N(t), t ≥ 0} is a mixed Poisson process then we can apply Theorem 1

replacing Ft(s) by s/t for s ≤ t. The function hn(t, z) defined in (7) becomes

hn(t, z) = E
{

1

tn
Gn
(
0
∣∣Sz, . . . , Sn+z−1

) ∣∣∣Sn+z = t

}
,

after applying the identity (73). Conditioning upon the values of Sz, and applying
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successively the identities (73) and (75) leads to

hn(t, z) =
1

tn
E
{
E
[
Gn
(
0
∣∣Sz, . . . , Sn+z−1

) ∣∣∣Sz, Sn+z

] ∣∣∣Sn+z = t
}

=
1

tn
E

{
E

[
Gn

(
−Sz

∣∣0,∆S
z+1 . . . ,

n−1∑
k=1

∆S
z+k

)∣∣∣ n∑
k=1

∆S
z+k = Sn+z − Sz

] ∣∣∣Sn+z = t

}

=
1

tn
E
{

(−Sz)[−Sz − (Sn+z − Sz)]n−1
∣∣∣Sn+z = t

}
=

(−1)n

tn
E
[
Sz(Sz+n)n−1

∣∣∣Sn+z = t
]

= (−1)n
z

n+ z
. (15)

Substituting (15) into (6) yields the announced result (14). �

The formula given in Corollary (1) is reminiscent of the first-hitting time theorem and

also the so-called Kendall identity, see for instance Borovkov and Burq [3], which gives

the p.d.f. of the first-meeting time of a spectrally negative Lévy process with a lower

linear boundary. The following example leads to an expression for the p.d.f. of τz

that allows the evaluation of the probability of a successful double-spending attack

P(τz <∞).

Example 2.1. Assume that the length of the chains {z+N(t) , t ≥ 0} and {M(t) , t ≥

0} are governed by two homogeneous Poisson processes of intensity λ and µ respectively.

The inter-arrival times {∆S
k , k ≥ 1} are i.i.d. exponential random variables with

parameter µ and associated p.d.f.

f∆S (x) = µe−µx, for x ≥ 0. (16)

Applying Corollary 1 yields, after a couple of rearrangements, the following expression

for the p.d.f. of τz,

fτz (t) =

+∞∑
n=0

(
z

z + n

)(
2n+ z − 1

n

)(
µ

µ+ λ

)n+z (
λ

µ+ λ

)n
(λ+ µ)2n+zt2n+z−1e−t(µ+λ)

Γ(2n+ z)
,

(17)

for t ≥ 0. Assuming that λ > µ and integrating (17) with respect to t yields the
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probability of successful double-spending attack with

P(τz <∞) =

+∞∑
n=0

(
z

z + n

)(
2n+ z − 1

n

)(
µ

µ+ λ

)n+z (
λ

µ+ λ

)n
=

(
λ+ µ

λ

)z
z

+∞∑
n=0

(
2n+ z − 1

n

)(
1

z + n

)[
λµ

(µ+ λ)2

]n+z

=

(
λ+ µ

λ

)z
z

+∞∑
n=0

(
2n+ z − 1

n

)∫ λµ

(µ+λ)2

0

tn+z−1dt

=

(
λ+ µ

λ

)z
z

+∞∑
n=0

(
2n+ z − 1

n

)∫ λµ

(µ+λ)2

0

tn+z−1dt

=

(
λ+ µ

λ

)z
z

∫ λµ

(µ+λ)2

0

tz−1
+∞∑
n=0

(
2n+ z − 1

n

)
tndt

=

(
λ+ µ

λ

)z
z

∫ λµ

(µ+λ)2

0

tz−1C(t)z−1

√
1− 4t

dt, (18)

where

C(t) =
1−
√

1− 4t

2t
, (19)

denotes the generating function of Catalan’s numbers, see for instance Aigner [1,

Chapter 3]. Note that the last equality follows from an exercise in the textbook

of Aigner [1, Exercise 3.25]. Inserting (19) into (18) yields, after straightforward

integration,

P(τz < +∞) =
(µ
λ

)z
.

The result given above is consistent with Corollary 3, see Section 4.

3. The s.f. of the double-spending time

In this section, the length of the honest and the malicious chains are governed by

two independent OSPPs. The order statistic property satisfied by {M(t) , t ≥ 0}

implies that

[S1, . . . , Sm|M(t) = m]
D
= (V ∗1:m, . . . , V

∗
m:m),

where V ∗1:m, . . . , V
∗
m:m denote the order statistics of a sample V ∗1 , . . . , V

∗
m of m i.i.d.

random variables having a c.d.f. F ∗t (s), for 0 ≤ s ≤ t. Note that, regarding {N(t) , t ≥

0}, the notation of Section 2 is preserved. The following result gives a formula in terms

of Appell polynomials for the s.f. of τz = inf{t ≥ 0 , M(t) = N(t) + z}.
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Theorem 2. If {N(t) , t ≥ 0} and {M(t) , t ≥ 0} are two OSPPs then the s.f. of

τz is given by

P(τz > t) = E
(
AM(t)

{
1
∣∣0, . . . , 0, F ∗t [V1:N(t)], . . . , F

∗
t [VM(t)+1−z:N(t)]

}
IM(t)≤N(t)+z−1

)
,

(20)

for t ≥ 0, where An(1|.) is an Appell polynomial such as defined in the Appendix A.

Proof. If M(t) ≥ N(t) + z, at time t ≥ 0, then the double-spending attack already

occured. Consider the event {τz > t}, conditioning upon the possible values of the

counting processes leads to

{τz > t} =

+∞⋃
n=0

n+z−1⋃
m=0

{τz > t} ∩ {N(t) = n} ∩ {M(t) = m}. (21)

The double-spending attack did not happen before time t ≥ 0 if M(t) is smaller or

equal to z − 1, irrespective of the value of N(t). If M(t) falls between z and N(t) + z

then N(t) must have jumped, at least once, and an investigation over the jump times

of both point processes must be conducted. The event {τz > t} is further rewritten as

{τz > t} =

z−1⋃
m=0

{M(t) = m}

∪
+∞⋃
n=1

n+z−1⋃
m=z

m⋂
k=z

{Sk > Tk+1−z} ∩ {N(t) = n} ∩ {M(t) = m}. (22)

The law of total probability yields

P (τz > t) = P [M(t) ≤ z − 1]

+

+∞∑
n=1

n+z−1∑
m=z

P

[
m⋂
k=z

{Sk > Tk+1−z}
∣∣∣N(t) = n,M(t) = m

]
× P [N(t) = n,M(t) = m] . (23)

Now, by the order statistic property, it holds that

[(T1, . . . , Tm+1−z)|N(t) = n]
D
= (V1:n, . . . , Vm+1−z:n)

and

[(Sz, . . . , Sm)|M(t) = m]
D
= (V ∗z:m, . . . , V

∗
m:m).
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Therefore, the conditional probability in (23) may be rewritten as

P

(
m⋂
k=z

{V ∗k:m > Vk+1−z:n}

)
= P

[
m⋂
k=z

{Uk:m > F ∗t (Vk+1−z:n)}

]
= Am

[
1
∣∣0, . . . , 0, F ∗t (V1:n), . . . , F ∗t (Vm+1−z:n)

]
,(24)

where U1:m, . . . , Um:m are the order statistics of a sample of m i.i.d. uniform random

variable on (0, 1) and Am(.|.) denote the Appell polynomials defined in the Appendix

A. Inserting (24) into (23) yields

P (τz > t) = P [M(t) ≤ z]

+

+∞∑
n=1

n+z−1∑
m=z

Am
[
1
∣∣0, . . . , 0, F ∗t (V1:n), . . . , F ∗t (Vm+1−z:n)

]
× P [N(t) = n,M(t) = m] , (25)

which is the same as (20) after noticing that Am(1|0, . . . , 0) = 1 for every m ∈ N. �

In Subsection 5.2, a Monte Carlo evaluation of the expectation of (20) is performed.

This type of estimator has been studied in Goffard and Lefèvre [17, Section 6] and

named Appell Polynomial Monte Carlo (APMC). The procedure entails a variance

reduction in comparison to a crude Monte Carlo evaluation. The following result shows

how formula (20) may be simplified by setting z = 1, when the OSPPs are similar in

a sense detailed below.

Corollary 2. Assume that z = 1. If {N(t) , t ≥ 0} and {M(t) , t ≥ 0} are two

OSPPs such that Ft(s) = F ∗t (s) for every s ≤ t then the s.f. of τz is given by

P(τz > t) = E
(
N(t)−M(t) + 1

N(t) + 1
IM(t)≤N(t)

)
, for t ≥ 0. (26)

Proof. Let {N(t) , t ≥ 0} and {M(t) , t ≥ 0} be two OSPPs such that Ft(s) =

F ∗t (s) for every s ≤ t. Applying Theorem 2, with z = 1, yields

P(τz > t) = E
(
AM(t)

{
1
∣∣U1:N(t), . . . , UM(t):N(t)

}
IM(t)≤N(t)

)
, for t ≥ 0.

Recall the probabilistic interpretation of the Appell polynomial in Proposition A.1 with

P(τz > t) = E
(
P
[
U∗1:M(t) > U1:N(t), . . . , U

∗
M(t):M(t) > UM(t):N(t)

}
IM(t)≤N(t)

)
,

for t ≥ 0. Applying Bertrand’s ballot theorem, allowing for ties, yields the announced

result (26). �
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The case treated in the numerical illustrations considers that the length of the chains

are governed by two non-homogeneous Poisson processes, which is consistent with the

empirical study conducted in Bowden et al. [8], as explained in the following example.

Example 3.1. Bowden et al. [8] recommended to model the arrival of blocks as a

non-homogeneous Poisson process with an intensity function designed to capture the

evolution of the global hashrate on one hand and the difficulty adjustment of the

cryptopuzzles on the other hand. The block number n is associated to a hash f(n)

which is a number drawn randomly from the lattice {0, 1, . . . , 2256 − 1}. Mining a

block consists in computing the hash of the block until it is lower than a target L.

The number of trial required is a geometric random variable Geom(L × 2−256) with

associated p.m.f. (1−L× 2−256)k−1L× 2−256 for k ≥ 1. The difficulty is adjusted by

tuning the target L. Denote by {Tk , k ≥ 1} the sequence of arrival time of the blocks.

The difficulty is adjusted every 2, 016 blocks to maintain an average of 1 block mined

every 10 minutes. Mining 2, 016 takes about 2 weeks. This leads to the definition of a

piecewise constant target function L(t) as

L(t) =

L0, for t ∈ (0, T2016),

Lk, for t ∈ (T2016k, T2016(k+1)), and k > 0,

(27)

where the sequence of real numbers {Lk , k ≥ 0} is defined recursively as

Lk =

2224, for k = 0,

Lk−1 ×
T2016k−T2016(k−1)

1209600 for k > 0.

Note that the time unit is the second and 1, 209, 600 seconds correspond to 2 weeks. The

number of trials relates to the mining time through the (global) hashrate function H(t).

The hashrate function corresponds to the number of hashes computed per second by

the entire network of miners. Hence, the instantaneous average mining time is given by

2256

H(t)L(t) and the intensity function of the underlying non-homogeneous Poisson process

is given by

λ(t) =
H(t)L(t)

2256
, for t ≥ 0. (28)

There are two main drivers of the hashrate. First, the improvement of the mining

machines which enhances the computing power of the miners. Second, the number
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of miners in the network. The miners enter and exit the network according to how

profitable mining BTCs is at the moment. This last factor depends on the price of

the electricity and the value of the BTCs at a given point in time. The target L(t)

is an information that can be collected from the header of the block. The hashrate

H(t) is retrieved from the knowledge of the difficulty and the timestamp data. The

authors of [8] proposed an exponential function of the form H(t) = eat+b arguing that

the log hashrate is piecewisely linear over time. The values of a and b follow from the

linear interpolation within successive time periods. Once the hashrate function has

been determined, the length of the blockchain {N(t) , t ≥ 0} is a non-homogeneous

Poisson process with intensity function λ(t) defined in (28). Assuming that N(t) = n,

the arrival times T1, . . . , Tn are distributed as the order statistics of n i.i.d. random

variables with associated c.d.f.

Ft(s) =
Λ(s)

Λ(t)
, for s ≤ t, (29)

where Λ(t) =
∫ t

0
λ(s)ds. In the event of a double-spending attack, the difficulty of

the puzzle is the same for the honest miners and the colluding miners. The difference

between the two pools lies in their computing power and thus their hashrate function.

We may assume that both the honest and dishonest miners contribute to the global

hashrate of the network in an additive way. More specifically, let H1(t) = p × H(t)

be the hashrate of the honest miners and H2(t) = (1 − p) × H(t), where p ∈ (0, 1)

represents the repartition of the computing resources among the miners. Theorem 2 is

applicable and formula (20) simplifies to

P(τz > t) = E
(
AM(t)

{
1
∣∣0, . . . , 0, U1:N(t), . . . , UM(t)+1−z:N(t)

}
IM(t)≤N(t)+z−1

)
, (30)

because F ∗t (s) = Ft(s) for every s ≤ t. An evaluation via Monte-carlo simulation is

possible by generating values for M(t), N(t), and U1:N(t), . . . , UM(t)+1−z:N(t). Appell

polynomials do not usually admit a closed-form expression but can be computed

recursively via the relations provided in the appendix A, see Proposition A.2.

Note that the evaluation of (20) may be achieved through the truncation of the infinite

series in (25) followed by numerical integration, in the same vein as what was done in

Dimitrova et al. [9]. Another solution would be to resort to a fully recursive evaluation

as in Lefèvre and Loisel [23].
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4. The probability of a successful double-spending attack

In this section, we study the probability of a successful double-spending attack,

P(τz < +∞), when the length of the chains {z +N(t) , t ≥ 0} and {M(t) , t ≥ 0} are

modeled by independent renewal processes generated by their respective sequence of

i.i.d. inter-arival times denoted by {∆T
k , k ≥ 1} and {∆S

k , k ≥ 1}. Assume that

(A1) E(∆S) > E(∆T ),

(A2) The equation

logE
[
eθ(∆

T−∆S)
]

= 0, (31)

has a unique non-negative solution denoted by γ, refered to as the adjustment

coefficient.

The stopping time τz = inf{t ≥ 0; M(t) = z + N(t)} coincides with the ruin time

τz = inf{t ≥ 0; R(t) = 0} associated to the risk process

R(t) = z +N(t)−M(t), t ≥ 0. (32)

Define the claim surplus process as

S(t) = M(t)−N(t), t ≥ 0. (33)

In risk theory, processes such as (32) model the evolution of the net worth of an

insurance company over time. Here, the insurance company holds an initial capital

of amount z, its premium income is governed by {N(t) , t ≥ 0} while {M(t) , t ≥ 0}

corresponds to its liability at time t ≥ 0. Note that I am only using risk theory

terminology to improve the presentation, I am not claiming that one should model the

evolution of the financial reserves of any non-life insurance company via (32). When

studying the distribution of the ruin time is problematic, a simple trick consists in

passing to a dual risk model. This approach is rather standard (see the references

given in the introduction). For the sake of clarity, the idea is recalled hereafter and

illustrated by Figure 2. Figure 2(a) displays the ruin problem in model (32). The

initial ruin problem is converted into another equivalent ruin problem. Increment the

value of {M(t), t ≥ 0} by one unit and consider the risk model

R̃(t) = z +N(t)− [M(t) + 1], t ≥ 0. (34)
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Further define the ruin time

τ̃z = inf{t ≥ 0 ; z +N(t) < [M(t) + 1]}, (35)

which coresponds to the first-crossing time of {M(t) + 1 , t ≥ 0} through the upper

boundary {N(t) + z , t ≥ 0}, see Figure 2(b). It holds that

τz
a.s.
= τ̃z, (36)

where
a.s.
= stands for equality almost sure as it is true for every trajectory. Then rotate

Figure 2(b) by 90◦ anticlockwise to get Figure 2(c). Shifting the origin from (0, 0)

to (z − 1, 0) finally leads to Figure 2(d). The ruin problem displayed on Figure 2(d)

concerns a discrete time risk model denoted by {R∗(n) , n ≥ 1} and defined as

R∗(n) = Sz−1 +

n∑
k=1

(
∆S
k+z−1 −∆T

k

)
, for n ∈ N. (37)

The initial capital is Sz−1, the sequence {∆S
k+z−1 , k ≥ 1} models the premium

collected at each time period, and the sequence {∆T
k , k ≥ 1} represents the total

claim amounts incurred during each time period. The conventions S0 = 0 and T0 = 0

are adopted. The claim surplus process {S∗(n) , n ≥ 1} is given by

S∗(n) =

n∑
k=1

(
∆T
k −∆S

k+z−1

)
, (38)

The ruin time is defined as σSz−1
= inf{n ∈ N ; R∗(n) ≤ 0} and relates to τz = inf{t ≥

0 ; R(t) = 0} as

τz
a.s.
= τ̃z

a.s.
= SσSz−1

+z−1, (39)

which implies that

P(τz <∞) = P(σSz−1
<∞). (40)

Again the one-to-one correpondence between the trajectories leading to ruin in the

multiple risk models entail the equality almost surely. The following result provides,

inter-alia, an upper bound for the probability of a successful double-spending attack.

Theorem 3. If {N(t) , t ≥ 0} and {M(t) , t ≥ 0} are two independent renewal

processes such that (A1)-(A2) hold then

P(τz <∞) =

[
E
(
e−γ∆S

)]z−1

E
[
eγξ(Sz−1)

∣∣τz <∞] , (41)
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Figure 2: Boundary crossing problems in the various risk models.

where ξ(Sz−1) = S(σSz−1
) − Sz−1 denotes the overshoot, immediately after ruin, in

model (37). The following Cramér-Lundberg upper bound holds

P(τz <∞) ≤
[
E
(
e−γ∆S

)]z−1

. (42)

Proof. The claim surplus process {S∗(n) , n ≥ 1} in (38) is a random walk. Assump-
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tion (A2) implies that the process {eγS∗(n) , n ≥ 1} is a martingale as a consequence

of [2, Theorem 1.1]. Note also that S∗(n)
a.s→ −∞, where

a.s→ stands for convergence

almost surely, follows from assumption (A1) and the law of large numbers. Let the

initial reserves Sz−1 = s ≥ 0 be fixed in (37). The application of [2, Proposition 3.1]

allows to rewrite the ultimate ruin probability as

P(σs <∞) =
e−γs

E
[
eγξ(s)

∣∣σs <∞] , (43)

where ξ(u) = S∗(σs)− s denotes the overshoot given that ruin occured in model (37).

Thanks to the connection (40), by conditioning on the values of Sz−1, it holds that

P(τz <∞) =
E
[
e−γSz−1

]
E
[
eγξ(Sz−1)

∣∣τz <∞] =
E
[
e−γ∆S

]z−1

E
[
eγξ(Sz−1)

∣∣τz <∞] . (44)

The upper bound (42) follows from noting that E
[
eγξ(Sz−1)

∣∣σs <∞] > 1. �

The next result specifies the expression for the probability P(τz <∞) in the case where

{N(t) , t ≥ 0} is a Poisson process.

Corollary 3. If {N(t) , t ≥ 0} is a homogeneous Poisson pocess of intensity λ and

{M(t) , t ≥ 0} is a renewal process, independent from {N(t) , t ≥ 0}, such that (A1)-

(A2) holds then

P(τz <∞) =
λ− γ
λ

E
[
e−γ∆S

]z−1

. (45)

If {M(t) , t ≥ 0} is also a homogeneous Poisson process of intensity µ < λ then

P(τz <∞) =
(µ
λ

)z
. (46)

Proof. As {N(t) , t ≥ 0} is a homogenous Poisson process, it is renewal process

and (41) holds. The sequence of inter-arrival times {∆T
k , k ≥ 1} is formed by i.i.d.

exponential random variables with parameter λ which implies that the overshoot

ξ(Sz−1) is also exponentially distributed with parameter λ by virtue of the lack of

memory of the exponential distribution. It follows that

E
[
eγξ(Sz−1)

∣∣τz <∞] =
λ

λ− γ
.

Substituting in (41) yields (45). Now, assume that {M(t), t ≥ 0} is also a Poisson

process with intensity µ < λ. The sequence of inter-arrival times {∆S
k , k ≥ 1} is
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made of i.i.d. exponential random variable with parameter µ. The equation (31) is

equivalent to

log

(
λµ

(λ− θ)(µ+ θ)

)
= 0, (47)

and admits γ = λ− µ as only non-negative solution. Substituting γ = λ− µ into (45)

yields (46). �

This result allows confirmation of Corollary 1, see Example 2.1. Note that the prob-

ability of a successful double-spending attack when the length of the chains are two

independent Poisson processes may be retrieved without using the duality argument

as shown in the following remark.

Remark 4.1. Assume that {N(t), t ≥ 0} and {M(t) , t ≥ 0} are two independent

homogeneous Poisson processes with respective intensity λ and µ such that λ > µ. The

claim surplus process, already defined in (33) as

S(t) = M(t)−N(t), for t ≥ 0, (48)

is the difference between two independent Poisson processes and thus a Lévy process.

[2, Theorem 1.2] then implies that the process defined by

eθS(t)−tκ(θ), for t ≥ 0, (49)

where κ(θ) = logE [θS(1)], is a martingale. The equation κ(θ) = 0 is equivalent to

µeθ + λe−θ − (λ+ µ) = 0, (50)

and admits a unique non-negative solution γ = log(λ/µ). Consequently, the process

{eγS(t) , t ≥ 0} is a martingale. Moreover, the condition λ > µ entails S(t)
a.s.→ −∞.

Applying [2, Proposition 3.1] yields

P(τz <∞) =
e−γz

E
[
eγξ(z)

∣∣τz <∞] , (51)

where ξ(z) = S(τz)− z denotes the overshoot after ruin occured in model (32). In the

case considered here there is no overshoot as S(τz) = z. Substituting γ = log(λ/µ)

into (51) yields (45).
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5. Numerical illustrations

The numerical results presented here are based on the data collected by Bowden [7]

and the analysis conducted in Bowden et al. [8]. In Subsection 5.1, data is used to fit

the inter-block time distribution within the public chain. The lack of data regarding

the growth of the malicious chain is circumvented by assuming that the inter-block

times in the malicious chain are defined as a transformation of the inter-block times

in the public chain. This allows us to illustrate the results given in Section 2 and 4.

Subsection 5.2 focuses on the case where the lengths of the chains are governed by non-

homogeneous Poisson processes which seems to be the most suitable model according

to Bowden et al. [8]. It allows us to illustrate the results derived in Section 3.

5.1. Length of the chains as renewal process

In this subsection, the length of the chains {N(t) , t ≥ 0} and {M(t) , t ≥ 0} are

assumed to be governed by renewal processes. The first task consists in studying the

fit of the inter-block time distribution to the data provided in Bowden [7]. Figure

3 displays the inter-block times chronologically. The distribution of the inter-block

(a) Time series of the interblock times. (b) Time series of the interblock time starting

from the 40000th block.

Figure 3: Chronological series of the inter-block times.

times of the first few blocks presents a few spikes (to the magnitude of the day) before
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reaching stationarity around the 200, 000th block, see Figure 3(a). If we limit our

analysis to the latest blocks, starting for instance from the 400, 000th, then the data

admits fewer outliers, with a maximum of 2 hours, see Figure 3(b). The inference of the

block arrival is therefore based on the inter-arrival times starting from the 400, 000th

block onward which still represents 96, 628 data points. The empirical mean is equal

to 9.57 minutes while the standard deviation is significantly lower than the overall one

with 9.56 minutes. Figure 4 shows the histogram of the inter-block times. The p.d.f.

of the exponential distribution Exp(λ̂), where λ̂ = 1/9.57 corresponds to the method

of moment estimator, matches reasonably well the histogram. On Figure 4(b), the

empirical quantiles are plotted against the quantiles of the exponential distribution

Exp(λ̂). The points overlap the diagonal y = x, which indicates a superb fit. This

(a) Histogram of the inter-block times distribu-

tion.

(b) Q-Q plot to test the adequacy to the expo-

nential distribution.

Figure 4: Distribution of the inter-block times.

analysis leads us to model the number of blocks in the honest chain {N(t) , t ≥ 0} by

a homogeneous Poisson process of intensity λ̂.

Regarding the block arrival in the malicious chain, no data is available. The only

a priori information is that the inter-block time should be larger to account for the

unbalanced repartition of the computing power in favor of the honest miners. The
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growth of {M(t) , t ≥ 0} should be slower than the growth of {N(t) , t ≥ 0}. In the

sequel, two definitions of the inter-arrival times {∆S
k , k ≥ 1} that generate {M(t) , t ≥

0} are compared in terms of the risk of a double-spending attack.

1. Define

∆S D
=

∆T

r
, (52)

where r > 1. The inter-arrival times {∆S
k , k ≥ 1} are i.i.d. exponential random

variables and the process {M(t) , t ≥ 0} is a homogeneous Poisson process

with intensity λ̂/r. Corollary 3 applies and the probability of successful double

spending attack is given by

P(τz <∞) =

(
1

r

)z
. (53)

The p.d.f. of the double spending time fτz follows from applying Corollary 1

and is given in (17) after substituting λ = λ̂ and µ = λ̂/r.

2. Define

∆S D
= ∆T

1 + . . .+ ∆T
r , (54)

where r > 1 is integer-valued. The inter-arrival times {∆S
k , k ≥ 1} are i.i.d.

gamma random variables Gam(r, λ) with associated p.d.f.

f∆S (t) =
e−λttr−1λt

Γ(r)
, for t ≥ 0. (55)

The process {M(t) , t ≥ 0} is a renewal process and Corollary 3 applies. The

probability of successful double spending attack is given by

P(τz <∞) =
λ− γ
λ

[
λ

λ+ γ

]r(z−1)

, (56)

where γ is the only non-negative solution to the equation

log

[
λr

(λ− θ)(λ+ θ)r−1

]
= 0. (57)

Note that the root in (57) is derived numerically using the uniroot built-in

function in R. The p.d.f. fτz of the double-spending time follows from the

application Corollary 1 and reduces, after a couple of rearrangements, to

fτz (t) =

+∞∑
n=0

(
z

z + n

)
Γ[r(n+ z) + n]

Γ(n+ 1)Γ[r(n+ z)]2r(n+z)+n

(2λ)r(n+z)+ntr(n+z)+n−1e−2λt

Γ[r(n+ z) + n]
,

(58)
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for t ≥ 0.

Table 1 reports the value of (53) and (56) for r = 2, 3, 4, 5 and z = 1, 2, 3, 4, 5. Although

∆S ∼ Exp(λ/r) ∆S ∼ Gamma(r, λ)

r = 2 r = 3 r = 4 r = 5 r = 2 r = 3 r = 4 r = 5

z

1 0.5000 0.3333 0.2500 0.2000 0.3819 0.1608 0.0724 0.0342

2 0.2500 0.1111 0.0625 0.0400 0.1459 0.0258 0.0052 0.0012

3 0.1250 0.0370 0.0156 0.0080 0.0557 0.0042 0.0004 0.0000

4 0.0625 0.0123 0.0039 0.0016 0.0213 0.0007 0.0000 0.0000

5 0.0312 0.0041 0.0010 0.0003 0.0081 0.0001 0.0000 0.0000

Table 1: Probability of a successful double-spending attempt

definitions 1 and 2 both means that the building of blocks is r times slower on average

in the malicious chain, the probability of a successful double-spending attack is much

smaller when {M(t) , t ≥ 0} is a renewal process with gamma distributed inter-arrival

times. It shows the influence of the shape of the distribution of the inter-arrival times

on the likelihood of a double-spending attack. Figure 5 displays the p.d.f. and c.d.f.

of the double-spending time

τ1 = inf{t ≥ 0 ; N(t) + 1 = M(t)},

for r = 2 along with the reference horizontal lines y = P(τ1 < ∞). Note that the

infinite series in (17) and (58) are truncated to the order K = 50. In both cases, the

merchant who is waiting for two hours is not taking much risk as the c.d.f. reaches

the barrier P(τ1 < ∞). Namely, if P(τ1 < ∞) − P(τ1 < t) = ε, for some t ≥ 0 and

ε > 0, then the probability of the double-spending ever being successful, conditionning

upon {τz > t}, may be written as

P(τz = +∞|τz > t) =
P(τz = +∞)

P(τz = +∞) + ε
.
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(a) P.d.f. of τ1. (b) C.d.f. of τ1 as well as P(τ1 <∞).

Figure 5: P.d.f. and c.d.f. of the double spending time τ1. (solid) {M(t) , t ≥ 0} is a

homogeneous Poisson process with intensity λ̂/2. (dashed) {M(t) , t ≥ 0} is a renewal

process with gamma Gam(r = 2, λ̂) distributed inter-arrival times.

That probability becomes close to one as we let ε tend toward 0. The R code is accessible

online at [16] for the sake of reproducibility.

5.2. Length of the chains as non-homogeneous Poisson process

In this subsection, the length of the chains {z + N(t) , t ≥ 0} and {M(t) , t ≥ 0}

are assumed to be governed by two non-homogeneous Poisson processes. The intensity

function of {N(t) , t ≥ 0} is given by

λ(t) =
pH(t)L(t)

2256
,

where H(t) denotes the global hashrate function, L(t) is the target function, and

p ∈ (0, 1) reflects the repartition of the computing power between honest and dishonest

miners. The reader is refered to Example 3.1 for a definition of these quantities. The

intensity function of {M(t) , t ≥ 0} is given by

λ∗(t) =
(1− p)H(t)L∗(t)

2256
.

The global hashrate is assumed to admit a parametric form with H(t) = eat+b, where

the values of a and b are selected from Bowden et al. [8, Table 1]. The difficulty is
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assumed to be the same for all the miners so that L∗(t) = L(t). More specifically, let

us consider a time span during which the difficulty is contant, equal to L say. This is

true for time periods that are about two weeks long as it corresponds to the average

time to discover 2, 016 blocks. The intensity function λ(t) associated to {N(t) , t ≥ 0}

becomes

λ(t) =
peat+bL

2256
,

and may be integrated as

Λ(t) =

∫ t

0

λ(s)ds =
pebL

2256a

(
eat − 1

)
. (59)

Note that we have equivalently

λ∗(t) =
(1− p)eat+bL

2256
,

and

Λ∗(t) =

∫ t

0

λ∗(s)ds =
(1− p)ebL

2256a

(
eat − 1

)
. (60)

In view of these assumptions, the conditional distribution of the block arrival times

given the length of the chain is the same in the honest and the malicious chain. Namely,

it holds that Ft(s) = F ∗t (s) and the probability P(τz > t) of the double-spending

attack being unsuccessful before t may be estimated via (30). The practical evaluation

is handled via Monte Carlo simulations, note that the numerical value of an Appell

polynomials of any order may be computed recursively using the relations given in the

appendix A, see Proposition A.2. Let the time unit be one second, consider a 2 weeks

long time period which corresponds to 1, 209, 600 seconds. Let us set the parameters

of the hashrate function to a = −9.44 × 10−9 and b = 27.1 according to the first row

of the table in Bowden et al. [8, Table 1]. The difficulty is assumed to be constant,

equal to

L = 2016× 2256a

eb(ea∗1209600 − 1)
,

in order to have on average 2, 016 blocks discovered by the end of the time horizon

(i.e. two weeks). Figure 6 displays the integrated intensity functions (59) and (60)

over time. The parametrization entails a linear growth (on average) of the chains

which makes our example close to the homogeneous Poisson arrival situation. Formula

(20) is difficult to use for risk management purposes without the knowledge of the
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Figure 6: Integrated intensity functions over time: (solid) Λ(t) associated to

{N(t) , t ≥ 0}, (dashed) Λ∗(t) associated to {M(t) , t ≥ 0}.

mass of probability associated to τz = ∞. This issue is addressed by assuming that

an attacker gives up his double-spending attempt if not completed within three hours

(10,800 seconds). It makes little sense in practice for an attacker to carry on an attack

for two weeks. We then investigate the probability of a successful double-spending

attack attempted every three hours over the course of two weeks. Namely, denote by

tk = k × 10800, for 0 ≤ k < 112,
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the sequence of time steps and

pz,k = P(τz,k < 10800), (61)

the probabilities of interest, where

τz,k = inf{t ∈ (tk, tk+1) ; M(t) = z +N(t)
∣∣M(tk) = N(tk) = 0}.

Let us assume that the honest chain is 1 block ahead, which in turn, allows to use

Formula (26) given in Corollary 2 and alleviate the computational burden associated

to the recursive evaluation of Appell polynomials. Figure 7 displays the value of

the probabilities (61) over the two weeks of operations for various repartition p ∈

{0.6, 0.7, 0.8, 0.9} of the hash power. Note that the evaluation is based on 10, 000

trajectories of {N(t) , t ≥ 0} and {M(t) , t ≥ 0}. The probabilities pz,k are constant

over time, this was expected as the arrival of blocks is almost time-homogenous due to

the parametrization of the global hashrate function. The source code is available online

[16] and the reader is invited to experiment the effect of modifying the parameters a

and b on the double-spending probabilities.

6. Concluding remarks

In this paper, the model, initially proposed by Satoshi Nakamoto [28], to comprehend

the double-spending issue is refined. Assuming that the lengths of the competing

blockchains are governed by counting processes leads to interesting boundary cross-

ing problems. This refinement offers more flexibility to reflect accurately the block

discovery frequency as well as the distribution of the computing power among honest

and dishonest miners through the calibration of the arrival times that generate the

aforementionned counting pocesses. Theorem 3 is useful to advise the merchant on

how many subsequent blocks should be added to the chain before shipping the good.

Theorems 1 and 2 enable to figure the time at which the double-spending attack is

most likely to occur. This is helpful to provide merchants with guidelines on how long

they should wait before shipping a good, which compliments the advice on the number

of blocks.
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Figure 7: Evolution of the probability of performing a successful double-spending

attack in the course of two weeks for various values of p: (solid) p = 0.6, (dashed)

p = 0.7, (dotted) p = 0.8, (dot-dash) p = 0.9.

Throughout this paper, the lag z > 0, between the honest and malicious chain is

assumed to be deterministic. In practice, because the length of the dishonest chain

is unknown to the vendor at the time of the shipping, the delay should be assumed

stochastic. From a mathematical point of view, the question is when do we initialize

the counting processes {N(t) , t ≥ 0} and {M(t) , t ≥ 0}. If the starting time is the

time at which the good is shipped then Z and the counting processes are independent.

Thus we can apply the law of total probability together with the formulas derived

above. We have an atom at 0 with probability mass P(Z ≤ 0). If we initialize

the counting processes at the time of issuance of the transactions then Z and the

counting processes are linked. The vendor is asked to wait for say k ∈ N blocks to

be added to the blockchain before shipping the good. The honest chain is then ahead

by Z = k −M(Tk), where Tk is the arrival time of the kth block in the honest chain.
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The time interval [0, Tk] is a burn-in period during which it does not matter which

chain is leading. If {N(t) , t ≥ 0} and {M(t) , t ≥ 0} are Poisson processes then Tk

has a gamma distribution, the stopped processes at Tk are again Poisson processes,

and M(Tk) is governed by a negative binomial distribution which is consistent with

Rosenfeld’s findings [33]. The general case will be studied in an upcoming research

work.

The success of the blockchain method has resulted in bitcoin becoming increasingly

popular and inspiring other electronic payment method. It is worth mentionning that

the results derived in this paper maybe relevant to understand other systems where

similar blockchain policies are used.

Selfish mining, described for instance in Sapirshtein et al. [34], Göbel et al. [14], and

Eyal and Siren [12], is another type of miners’ misconduct. Nowadays, it is no longer

feasible to mine BTCs in isolation. Empirical evidence shows that BTCs miners

behave strategically by gathering in pools. All members contribute to the solution of

each cryptopuzzle, and share the rewards proportionally to their contribution. Selfish

mining is a strategy that can be used by a minority pool to obtain more revenue.

The key idea is for the pool of selfish miners to keep its discovered blocks private while

honest nodes continue to mine on the public chain. Assuming that the private chain has

the lead over the public chain, when the public branch approaches the selfish miners’

one, the private chain is released publicly. It results in a waste of resources for all

the miners but Eyal and Siren [12] showed that the revenue of the selfish miners goes

beyond the revenue expected when following the usual protocol given their share of the

total computing power. The results presented here may be relevant in the context of a

selfish mining attack as it boils down again to the race between two counting processes.

Acknowledgements

I want to thank the anonymous referee for carefully reading my work, making useful

suggestions, and pointing out the work of Rosenfeld [33]. I am thankful to Stéphane
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[26] Lefèvre, C. and Picard, P. (2015). Risk models in insurance and epidemics:

A bridge through randomized polynomials. Probability in the Engineering and

Informational Sciences 29, 399–420.

[27] Mazza, C. and Rullière, D. (2004). A link between wave governed random

motions and ruin processes. Insurance: Mathematics and Economics 35, 205–222.

[28] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Available

at https://bitcoin.org/bitcoin.pdf.

[29] Perry, D., Stadje, W. and Zacks, S. (2002). Boundary crossing for the

difference of two ordinary or compound Poisson processes. Annals of Operations

Research 113, 119–132.

[30] Perry, D., Stadje, W. and Zacks, S. (2005). A two-sided first-exit problem

for a compound Poisson process with a random upper boundary. Methodology and

Computing in Applied Probability 7, 51–62.

https://bitcoin.org/bitcoin.pdf


Fraud risk blockchain 35
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Appendix A. Appell and Abel-Gontcharov polynomials

Appell and Abel-Gontcharov (A-G) polynomials are well-known in mathematics.

They can be used to solve various problems in statistics and applied probability. A

short presentation is provided below. We refer e.g. to Lefèvre and Picard [26] for a

review with applications in risk modelling. Let U = {ui , i ≥ 1} be a sequence of real

numbers, non-decreasing in our context. To U is attached a (unique) family of Appell

polynomials of degree n in x, {An(x|U) , n ≥ 0}, defined as follows. Starting with

A0(x|U) = 1, the An(x|U) satisfy the differential equations

A(1)
n (x|U) = nAn−1(x|U), (62)

with the border conditions

An(un|U) = 0, n ≥ 1. (63)

So, each An, n ≥ 1, has the integral representation

An(x|U) = n!

∫ x

un

[∫ yn

un−1

dyn−1 . . .

∫ y1

u1

dy2

]
dyn. (64)
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In parallel, to U is attached a (unique) family of Abel-Gontcharov (A-G) polynomials

of degree n in x, {Gn(x|U) , n ≥ 0}. Starting with G0(x|U) = 1, the Gn(x|U) satisfy

the differential equations

G(1)
n (x|U) = nGn−1(x|EU), (65)

where EU is the shifted family {ui+1 , i ≥ 1}, and with the border conditions

Gn(u1|U) = 0, n ≥ 1. (66)

So, each Gn, n ≥ 1, has the integral representation

Gn(x|U) = n!

∫ x

u1

[∫ y1

u2

dy2 . . .

∫ yn−1

un

dyn

]
dy1. (67)

Note that both polynomial families are sometimes defined without the factor n! in (64)

and (67). Of course, these polynomials are related through the identity

Gn(x|u1, . . . , un) = An(x|un, . . . , u1), n ≥ 1. (68)

However, the two families (i.e. considered for all n ≥ 0) are distinct and enjoy quite

different properties. From (64) and (67), one may see that the polynomials An and

Gn, n ≥ 1, can be interpreted in terms of the joint distribution of the order statistics

(U1:n, . . . , Un:n) of a sample of n independent uniform random variables on (0, 1).

Proposition A.1. For 0 ≤ u1 ≤ . . . ≤ un ≤ x ≤ 1,

P [U1:n ≥ u1, . . . , Un:n ≥ un and Un:n ≤ x] = An(x|u1, . . . , un),

while for 0 ≤ x ≤ u1 ≤ . . . ≤ un ≤ 1,

P [U1:n ≤ u1, . . . , Un:n ≤ un and U1:n ≥ x] = (−1)nGn(x|u1, . . . , un). (69)

These representations play a key role in the first-meeting problems discussed in the

paper. Numerically, it will be necessary to evaluate some special values of the polyno-

mials. To this end, it is convenient to use the following recursive relations.

Proposition A.2.

An(x|U) =

n∑
k=0

(
n

k

)
An−k(0|U)xk, n ≥ 1, (70)
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where the An(0|U)’s are obtained recursively from

An(0|U) = −
n∑
k=1

(
n

k

)
An−k(0|U)ukn, n ≥ 1. (71)

The A-G polynomials are computed through the recursion

Gn(x|U) = xn −
n−1∑
k=0

(
n

k

)
un−kk+1Gk(x|U), n ≥ 1. (72)

Formulas (70), and (71) follow from the Taylor’s expansion of An, using also (62), and

(63). Formula (72) follows from an Abelian expansion of xn based on (65), and (66).

Details are omitted here. Of course, the computing time increases with the degree of

the polynomials. Note that

An(x|a+ bU) = bnAn ((x− a)/b |U) , n ≥ 1, (73)

with the same identity for Gn. An important particular case in our study is when the

parameters in U are random and correspond to partial sums of exchangeable random

variables.

Proposition A.3. Let {Xn , n ≥ 1} be a sequence of exchangeable random variables,

of partial sums Sn =
∑n
k=1Xk with S0 = 0. Then, for n ≥ 1,

E [An(x|S1, . . . , Sn)|Sn] = xn−1(x− Sn), (74)

E [Gn(x|S0, . . . , Sn−1)|Sn] = x(x− Sn)n−1. (75)

Proof. The identity (74) was derived in Proposition A.1 of Lefèvre and Picard [24],

while the identity (75) follows from Goffard and Lefèvre [18]. �
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