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Abstract

On one hand, an ordered dual risk model is considered where the
profit arrivals are governed by an order statistic point process (OSPP).
First, the ruin time distribution is obtained in terms of Abel-Gontcharov
polynomials. Then, by duality, the ruin time distribution is deduced for an
insurance model where the claim amounts correspond to the inter-arrival
times in an OSPP. On the other hand, an ordered insurance model is
considered with an OSPP as claim arrival process. Lefèvre and Picard [28]
determined the finite-time ruin probability in terms of Appell polynomials.
Duality is used to derive the ruin probability in a dual model where the
profit sizes correspond to the inter-arrival times of an OSPP.

MSC 2010: 60G55, 60G40, 12E10.
Keywords: Primal and dual risk models; Order statistic property; Ruin prob-
lems; Appell and Abel-Gontcharoff polynomials.

1 Introduction

Dual risk models describe the wealth of a company for which the operational cost
is deterministic and the profits occur stochastically. Their appellation comes
from the duality with insurance (or primal) risk models for which the premium
income is deterministic and the claims arrive stochastically. There is an ex-
tensive literature on insurance risk models. Dual risk models have received an
increasing interest in recent years.

Dual risk model. A company holds an initial capital v > 0 and faces
running costs at a constant rate a > 0. The company makes profits over time
that form a sequence {Yi, i ≥ 0} of i.i.d. non-negative random variables. These
profits occur according to a counting process {M(t), t ≥ 0}, independently of
the Yi. The associated wealth process {W (t), t ≥ 0} is given by

W (t) = v − at+

M(t)∑
i=1

Yi, t ≥ 0. (1)
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The ruin time, σv, is the first instant at which the wealth process falls at the
level 0, i.e.

σv = inf{t ≥ 0 : W (t) = (≤) 0}. (2)

The dual risk model is considered e.g. in the books by Cramér [12], Seal
[37], Takàcs [41], Grandell [24] and Asmussen and Albrecher [3]. The model
is suitable for risky business sectors such as oil prospection, pharmaceutical
research or new technology development. So, Bayraktar and Egami [6] use it
to describe the financial reserves of venture capital funds, and Bertail et al. [8]
to model the exposure to a given food contaminant. Another application is in
life insurance when a company pays annuities on a regular basis and receives a
part of the reserves at each policyholder death.

Many of the works on dual models focus on optimal dividend problems. We
refer e.g. to Avanzi et al. [4], Gerber and Smith [21], Albrecher et al. [2], Dai
et al. [13], Cheung [11], Afonso et al. [1], and Bergel et al. [7]. First-passage
problems and ruin time are also much studied; see e.g. Landriault and Sendova
[26], Mazza and Rullière [31], Zhu and Yang [43], Yang and Sendova [42] and
Dimitrova et al. [18]. There exists here a close and important connection with
queueing models; see e.g. Frostig [19], Badescu et al. [5] and Frostig and Keren-
Pinhasik [20].

The classical dual model is the compound Poisson case where the counting
process {M(t), t ≥ 0} in (1) is a Poisson process. The Sparre-Andersen case
where {M(t), t ≥ 0} is a renewal process and other extensions like the Markov-
modulated case have been investigated to a certain extent.

In this paper, we first examine a dual risk model where {M(t), t ≥ 0} is an
order statistic point process (OSPP). Such a model is named ordered dual in
the sequel. The class class of OSPP was characterized by Puri [34], further to
earlier partial results. The key property of an OSPP is that conditionally on the
number of profit arrivals up to time t ≥ 0, the jump times are distributed as the
order statistics for a random sample drawn from some continuous distribution
with support (0, t). The OSPP cover the (mixed) Poisson process, the linear
birth process with immigration and the linear death counting process. This class
of counting processes was proposed to model claim frequencies in insurance by
Lefèvre and Picard [28], after the pioneering works of De Vylder and Goovaerts
[14, 15]. It was used later by Sendova and Zitikis [38], Lefèvre and Picard [29, 30]
and Dimitrova et al. [17].

For that dual model, our purpose is to derive an explicit formula for the
distribution of the ruin time σv. To this end, we use the representation of the
joint distribution of the order statistics from a uniform distribution through
the so-called Abel-Gontcharov polynomials. This family of polynomials is little
known and related to the more standard Appell polynomials. A review on both
polynomial families is provided in Lefèvre and Picard [30], with applications in
risk modelling.

Insurance risk model. An insurance company has an initial capital u ≥ 0
and receives premiums at a constant rate c > 0. The company covers claim
amounts over time that form a sequence {Xi, i ≥ 0} of i.i.d. non-negative ran-
dom variables. These claims occur according to a counting process {N(t), t ≥
0}, independently of the Xi. The associated reserve process {R(t), t ≥ 0} is
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given by

R(t) = u+ ct−
N(t)∑
i=1

Xi, ≥ 0. (3)

The ruin time, τu, is the first instant at which the reserve process becomes
negative, i.e.

τu = inf{t ≥ 0 : R(t) < 0}. (4)

Much research is devoted to insurance risk models, especially for ruin related
problems. The reader is referred e.g. to the books of Asmussen and Albrecher [3]
and Dickson [16]. The traditional case is the compound Poisson model where
the counting process {N(t), t ≥ 0} in (3) is a Poisson process. The Sparre-
Andersen model supposes that {N(t), t ≥ 0} is a renewal process. A number of
generalizations and variants of these models have been considered. This is the
case e.g. of the mixed Poisson model (see Grandell [25]).

It is well-known that to the insurance risk model (3) is associated a dual risk
model (1) whose characteristics are inverted in a precise sense. Specifically, the
profits in the dual model correspond to the inter-arrival times in the insurance
model while the inter-arrival times in the dual model correspond to the claim
sizes in the insurance model, and the cost rate in the dual model is the inverse
of the premium rate in the insurance model. This duality is pointed out and
exploited in various works in insurance. Let us mention e.g. the recent papers
by Shi and Landriault [39], Mazza and Rullière [31], Borovkov and Dickson [10]
and Dimitrova et al. [18]. A similar duality property is used with Lévy processes
in finance.

This link between the primal and dual models can provide a simple approach
for tackling ruin problems. Mazza and Rullière [31] start with the compound
Poisson dual model, a recursive formula for the finite-time ruin probability is
derived (similar to existing recursive formula for the finite-time ruin probability
in the insurance risk model, see e.g. Picard and Lefèvre [33], Loisel and Rullière
[36] and Lefèvre and Loisel [27]) and then pass to the insurance model with
exponential claim amounts. Dimitrova et al. [18] apply results for the insurance
model to obtain the ruin probability in the corresponding dual model.

In the same vein, we will make here a round trip between the dual and insur-
ance models. As announced above, we first derive a formula for the distribution
of the ruin time σv in an ordered dual risk model. From this formula, we then
deduce the distribution of the ruin time τu in the Sparre-Andersen insurance
model where the claim arrivals are governed by a renewal process and the claim
amounts are distributed as the inter-arrival times in an OSPP. As a special case,
we recover a result obtained by Borovkov and Dickson [10] for the case of i.i.d.
exponential claim amounts.

Our second journey is from the primal to the dual and concerns now the
finite-time ruin probability. We start with an ordered insurance model where
the claim arrivals are described by an OSPP. For this model, Lefèvre and Pi-
card [28, 29] derived a formula for the ruin probability in terms now of Appell
polynomials. By duality, we can then obtain the finite-time ruin probability
in the associated dual risk model where the profit arrivals are governed by a
renewal process and the profit sizes are distributed as the inter-arrival times in
an OSPP.
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It is worth underlining that the approach by duality enables us to deal with
ruin problems in primal or dual risk models of renewal type which allow for some
dependence between the claim or profit sizes. Models with dependent claims or
profits are usually difficult to study. The present method, rather simple, relies
on a preliminary study of the ruin in the associated dual and primal models.
Such a study is possible when the latter models are ordered, i.e. the profits or
claims arrive according to an OSPP.

Summary. The paper is organized as follows. Section 2 gives an overview
of the order statistic point processes. In Section 3, we obtain the ruin time
distribution in the ordered dual model when the profits arrivals are governed
by an OSPP. In Section 4, we deduce the ruin time distribution in a Sparre-
Andersen insurance model where the claim amounts correspond to the inter-
arrival times of an OSPP. In Section 5, we obtain the finite-time ruin probability
in the associated dual model where the profit sizes correspond to the inter-arrival
times of an OSPP.

2 Order statistic property

The Poisson process is the traditional model for counting events that arise ran-
domly in the course of time. Of simple construction, it has also many desirable
properties. In particular, it belongs to the class of order statistic point processes.

Definition 2.1. A point process {N(t), t ≥ 0}, with N(0) = 0, is an OSPP if
for every n ≥ 1, provided P[N(t) = n] > 0, then conditioned upon [N(t) = n],
the successive jump times (T1, T2, . . . , Tn) are distributed as the order statistics
[U1:n(t), . . . , Un:n(t)] of a sample of n i.i.d. random variables on [0, t], distributed
as a variable U(t) of distribution function P[U(t) ≤ s] = Ft(s), 0 ≤ s ≤ t.

De Vylder and Goovaerts [14, 15] introduced a risk model, named homoge-
neous, that generalizes the classical Cramér-Lundberg risk model. When defined
on an infinite horizon, this model supposes that the claim arrival process sat-
isfies the above order statistic property where U(t), t > 0, is uniform on (0, t)
(as it is for the Poisson process). Their research was made independently of the
existing literature on OSPP.

More recently, Lefèvre and Picard [28] introduced an insurance risk model
in which claim arrivals are described by an OSPP. This paper was continued in
Lefèvre and Picard [29, 30]. The purpose there is to determine the finite-time
ruin probability in such a model. We also mention the related works by Sendova
and Zitikis [38], Dimitrova et al. [17] and Goffard [22]. Outside of the insurance
context, Goffard and Lefèvre [23] studied the first-crossing problem of an OSSP
through general boundaries.

A complete representation of the class of OSPP was obtained by Puri [34],
following on earlier works. A key result is recalled below.

Proposition 2.2. (Puri [34])
Let {N(t), t ≥ 0} be an OSPP where µ(t) = E[N(t)] is finite for all t.

(i) If lim
t→∞

µ(t) = ∞, then {N(t), t ≥ 0} is a mixed Poisson process up to a

time-scale transformation. So, it can be represented as

N(t) = P [Dν(t)] , t ≥ 0, a.s., (5)
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where P(θ) denotes a Poisson distribution of parameter θ, D is an independent
non-negative random variable and ν(t) is a deterministic time function.

(ii) If lim
t→∞

µ(t) = µ < ∞, then {N(t), t ≥ 0} is a death counting process in

which the individual lifetimes are i.i.d. random variables of distribution func-
tion µ(t)/µ, t ≥ 0, and there is initially an independent random number Z of
individuals in the population. So, it can be represented as a mixed binomial
process, i.e.

N(t) = B [Z, µ(t)/µ] , t ≥ 0, a.s., (6)

where B(z, p) denotes a binomial distribution of parameters z and p.

For both cases, the order statistic property holds with

Ft(s) = µ(s)/µ(t), 0 ≤ s ≤ t. (7)

Here are some simple special cases used in various applications.

Particular OSPP

(1) A Poisson process of parameter λ. Here, N(t) has a Poisson distribution
of mean µ(t) = λt. So, (5) holds with D = λ a.s. and ν(t) = t, and (7)
gives Ft(s) = s/t.

(2) An inhomogeneous Poisson process of continuous intensity function λ(t).

Here, N(t) has a Poisson distribution of mean µ(t) =
∫ t

0
λ(z)dz. So, (5)

holds with D = 1 a.s. and ν(t) = µ(t), and Ft(s) is given by (7).

(3) A mixed Poisson process of mixing variable Λ. Here, N(t) has a mixed
Poisson distribution of random parameter Λ, with mean µ(t) = E(Λ)t.
So, (5) holds with D = Λ and ν(t) = t, and (7) gives Ft(s) = s/t (inde-
pendently of Λ).

For instance, if Λ has a gamma distribution Γ(γ, β), then the mixed Pois-
son process is a negative binomial process (or Pólya process) of parameters
γ and β. So, N(t) has a negative binomial distribution:

P [N(t) = n] =

(
γ + n− 1

n

)(
t

t+ β

)n(
β

t+ β

)γ
, n ≥ 0,

with mean µ(t) = (γ/β)t.

(4) A linear birth process of rate α and with immigration of rate λ. Here,
N(t) has a negative binomial distribution:

P [N(t) = n] =

(
λ/α+ n− 1

n

)
(1− e−αt)n e−λt, n ≥ 0,

with mean µ(t) = (λ/α)(eλt − 1).

This process can also be considered as a non-homogeneous mixed Poisson
process (5) for which D has a gamma distribution Γ(λ/α, 1) and ν(t) =
exp(λt)− 1.
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(5) A linear death counting process of rate α and initial size n. Here, N(t)
has a binomial distribution:

P [N(t) = n] =

(
z

n

)
(1− e−αt)ne−αt(z−n), 0 ≤ n ≤ z,

with mean µ(t) = z(1−e−αt), of finite limit µ = z as t→∞. So, (6) holds
with Z = z a.s. and the lifetimes are i.i.d. exponentials of parameter α.

In the sequel, we will be also interested in the distributions of the inter-
arrival times ∆T

i , i ≥ 1, in an OSPP; so, ∆T
i = Ti − Ti−1with T0 = 0. They are

named here level spacings (as a level spacing in physics is the difference between
two consecutive elements). There is no general formula for the joint disributions
of the ∆T

i , unfortunately. Nevertheless, a simple expression is available for the
previous special cases.

Particular level spacings

(1) For a Poisson process, the ∆T
i are i.i.d. exponentials of parameter λ.

(2) For an inhomogeneous Poisson process, the ∆T
i are dependent and each

vector (∆T
1 , . . . ,∆

T
n ) has density

f∆T
1 ,...,∆

T
n

(x1, . . . , xn) = e−µ(x1+...+xn)
n∏
i=1

λ(x1 + . . .+ xi), xi ≥ 0.

(3) For a mixed Poisson process, the ∆T
i are mixed exponentials such that

each vector (∆T
1 , . . . ,∆

T
n ) has density

f∆T
1 ,...,∆

T
n

(x1, . . . , xn) = E
[
Λn e−Λ(x1+...+xn)

]
, xi ≥ 0.

(4) For a linear birth process with immigration, the ∆T
i (i ≥ 1) are indepen-

dent exponentials of parameter λ+ α(i− 1).

(5) For a linear death counting process, the ∆T
i (1 ≤ i ≤ z) are independent

exponentials of parameter α(z − i+ 1).

3 Ordered dual risk model

Consider a dual risk model (1) in which the profits arrive according to an OSPP.
So, the wealth process is given by

W (t) = v − at+ V (t), where V (t) =

M(t)∑
i=1

Yi, t ≥ 0. (8)

Here, v > 0 and a > 0, {M(t), t ≥ 0} is an OSPP and the Yi are i.i.d. non-
negative random variables. The partial sums of profits are denoted by Vn =
Y1 + . . .+ Yn, n ≥ 1, with V0 = 0.

The ruin time σv is defined by (2). From (8), we see that σv ≥ v/a, i.e.
ruin cannot arise before time v/a. Evidently, σv is the first-meeting time of the
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responds to a trajectory of the claim amount
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Figure 1: Boundary crossing problem in the dual risk model.

process {V (t), t ≥ 0} with the lower linear boundary y = −v + at, t ≥ 0. Let
Si, i ≥ 1, denote the arrival time of the i-th profit, and let ∆S

i = Si − Si−1

be the inter-arrival times with S0 = 0. Figure 1(a) illustrates the first-meeting
problem under study.

Let us suppose that the Yi have a density fY . As usual, we write f∗nY , n ≥ 1,
for the n-th convolution of fY , with f∗0Y (y) = 1(y=0). Our purpose is to obtain
the distribution of the ruin time σv. This will be done using a family of Abel-
Gontcharoff (A-G) polynomials. A short presentation of the A-G polynomials is
given in the Appendix A. They are constructed from a given set of real numbers
U = {ui, i ≥ 1}. The A-G polynomial of degree n in x is then denoted by
Gn(x|U).

Theorem 3.1. The ruin time σv takes values t ≥ v/a. It has an atom at v/a
with

P(σv = v/a) = P [M(v/a) = 0] , (9)

while for t > v/a, it has a density part given by

fσv (t) = aE
[
(−1)M(t) f

∗M(t)
Y (at− v)hM(t)(t, v)1{M(t)≥1}

]
, (10)

where if [M(t) = n], the function hn(t, v) is the conditional expectation

hn(t, v) = E
{
Gn

[
0
∣∣∣Ft(V0 + v

a

)
, . . . , Ft

(
Vn−1 + v

a

)] ∣∣∣Vn = at− v
}
. (11)
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Proof. As observed before, ruin is not possible before time v/a. It will occur at
time t = v/a if no profits arrived until that time. So, the distribution of σv has
an atom at t = v/a of probability mass P[M(v/a) = 0], hence (9).

Now, consider any time t > v/a. Evidently, at least one profit is recorded
at t (otherwise, ruin would occur at time v/a). Let us look at the event [σv ∈
(t, t+ dt)] where dt is small enough. We can express it as

[σv ∈ (t, t+ dt)] =

+∞⋃
n=1

{[M(t) = n] ∩ [σv ∈ (t, t+ dt)]} (12)

=

+∞⋃
n=1

{
[M(t) = n]

n⋂
k=1

[
Sk ≤

Vk−1 + v

a

]
∩
[
Vn + v

a
∈ (t, t+ dt)

]}
. (13)

Conditioning on [M(t) = n], (12) gives

P[σv ∈ (t, t+ dt)] =

+∞∑
n=1

P[σv ∈ (t, t+ dt)
∣∣M(t) = n]P[M(t) = n], (14)

and from (13), we get

P[σv ∈ (t, t+ dt)
∣∣M(t) = n]

= P

{
n⋂
k=1

[
Sk ≤

Vk−1 + v

a

]
∩
[
Vn + v

a
∈ (t, t+ dt)

] ∣∣∣M(t) = n

}
. (15)

By the order statistic property (see Definition 2.1), given [M(t) = n], the
vector (S1, . . . , Sn) is distributed as the order statistics [U1;n(t), . . . , Un;n(t)] of
a sample of n i.i.d. random variables with distribution function Ft on (0, t).
This implies that

[Ft(U1:n(t)), . . . , Ft(Un:n(t))]
D
= (U1;n, . . . , Un;n), (16)

where (U1:n, . . . , Un:n) are the order statistics of n independent uniform variables
on (0, 1). Thanks to (16), we may rewrite (15) as

P[σv ∈ (t, t+ dt)
∣∣M(t) = n]

= P

{
n⋂
k=1

[
Uk:n(t) ≤ Vk−1 + v

a

]
∩
[
Vn + v

a
∈ (t, t+ dt)

]}

= P

{
n⋂
k=1

[
Uk:n ≤ Ft

(
Vk−1 + v

a

)]
∩
[
Vn + v

a
∈ (t, t+ dt)

]}

= P

{
n⋂
k=1

[
Uk:n ≤ Ft

(
Vk−1 + v

a

)] ∣∣∣Vn + v

a
∈ (t, t+ dt)

}

P
[
Vn + v

a
∈ (t, t+ dt)

]
. (17)

The key step here is the probabilistic interpretation of the A-G polynomials
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given in (A.1). Using that property, we obtain

P

{
n⋂
k=1

[
Uk:n ≤ Ft

(
Vk−1 + v

a

)] ∣∣∣Vn + v

a
∈ (t, t+ dt)

}

= E

{
P

[
n⋂
k=1

[
Uk:n ≤ Ft

(
Vk−1 + v

a

)] ∣∣∣V1, . . . , Vn

] ∣∣∣Vn = at− v

}

= (−1)nE
{
Gn

[
0
∣∣Ft(V0 + v

a

)
, . . . , Ft

(
Vn−1 + v

a

)] ∣∣∣Vn = at− v
}

= (−1)nhn(t, v), n ≥ 1, (18)

in the notation (11). Furthermore, we have

P
[
Vn + v

a
∈ (t, t+ dt)

]
= a f∗nY (at− v)dt, n ≥ 1. (19)

Inserting (18), (19) in (14), (17), we then deduce the result (10), (11).

The formulas (10), (11) exhibit clearly the algebraic structure underlying
the density part of σv. Of course, their numerical implementation can be rather
complex but it remains quite practicable. We now show that the result becomes
especially simple when the OSPP is a mixed Poisson process (see case (3) of
OSPP in Section 2).

Corollary 3.2. If {M(t), t ≥ 0} is a mixed Poisson process, then

fσv
(t) =

v

t
E
[
f
∗M(t)
Y (at− v)1{M(t)≥1}

]
, t > v/a. (20)

Proof. As indicated in Section 2, if the OSPP is a mixed Poisson process, then
Ft(s) = s/t for s ∈ [0, t]. Thus, hn(t, v) in (11) becomes

hn(t, v) = E
[
Gn

(
0
∣∣∣V0 + v

at
, . . . ,

Vn−1 + v

at

) ∣∣∣Vn = at− v
]

=
1

(at)n
E
[
Gn(−v|V0, . . . , Vn−1)

∣∣∣Vn = at− v
]
, n ≥ 1, (21)

using the identity (54) for Gn.
Now, the Yi being i.i.d. random variables, Property A.2 for the conditional

expectation of Gn is applicable to (21). This yields

hn(t, v) =
1

(at)n
(−v)(−v − at+ v)n−1 = (−1)n

v

at
, n ≥ 1. (22)

Combining (22) with (10) then gives the formula (20).

We mention that an analogous result was obtained by Stadje and Zacks [40].

Remark. Consider the special case where {M(t), t ≥ 0} is a standard Poisson
process. Then, the process {X̂(t) = at − V (t), t ≥ 0} is a Lévy process which
is skip free in the positive direction. In other words, it has no positive jumps
and its increments are stationary independent. The stopping time σv becomes
here inf{t ≥ 0 : X̂(t) = v}. For this problem, the famous Kendall identity is
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applicable (see, e.g., Borovkov and Burq [9]). One can check that, as expected,
formula (20) is in agreement with that identity.

Examples. (a) Suppose that {M(t), t ≥ 0} is a Poisson process of parameter
λ, and that the profit sizes are exponentially distributed of parameter µ. Then,
formula (20) becomes explicit as the density part of a compound Poisson distri-
bution with exponentially distributed summands is known (see, e.g., Rolski et
al. [35], Equation 4.2.8). This yields

fσv
(t) =

v

t
e−[λt+µ(at−v)]2

√
λtµ/(at− v) I1

[
2
√
λtµ(at− v)

]
, t > v/a,

where I1(z) is the modified Bessel function
∑+∞
k=0

(x/2)2k+1

Γ(k+2) , z ∈ R.

(b) Suppose that {M(t), t ≥ 0} is a negative binomial process of parameters
γ = 1 and β (i.e., a mixed Poisson process with an exponential mixing variable
of parameter β; see case (3) in Section 2), and that the profit sizes are expo-
nentially distributed of parameter µ. Then, M(t) has a geometric distribution
with probability of success β/(t + β) (see case (3) in Section 2), and formula
(20) gives, after some elementary calculations,

fσv
(t) =

vβµ

(t+ β)2
exp

[
−βµ(at− v)

t+ β

]
, t > v/a.

The case where γ is any non-negative integer can be handled too as the den-
sity part of a compound negative-binomial distribution with exponentially dis-
tributed summands is known (e.g., Rolski et al. [35], Equation 4.2.10).

For both examples, the finite-time ruin probability can be easily evaluated
through a numerical integration procedure.

4 Primal with claims as spacing levels

Consider an insurance risk model (3) of Sparre-Andersen type in which the claim
amounts are distributed as spacing levels in an OSPP. So, the reserve process
is given by

R(t) = u+ ct− C(t), where C(t) =

N(t)∑
i=1

Xi, t ≥ 0. (23)

Here, u ≥ 0 and c > 0, {N(t), t ≥ 0} is a renewal process and the Xi are non-
negative random variables with a level spacing distribution. These Xi generate
an OSPP {M(t), t ≥ 0}, say.

The ruin time τu is defined by (4). This time, τu is the first-crossing time
of the stochastic process {C(t), t ≥ 0} through the upper linear boundary x =
u+ ct, t ≥ 0. Obviously, τu can take any value t ≥ 0. Let Ti, i ≥ 1, denote the
arrival time of the i-th claim, and let ∆T

i = Ti − Ti−1 be the inter-arrival times
with T0 = 0. Figure 2(a) illustrates this first-crossing problem. Note that the
crossing is not a meeting as in the previous dual model since the trajectory is
jumping over the boundary.

Let us suppose that the ∆T
i have a density f∆T . By a duality argument,

we are going to derive a formula for the density of the ruin time τu. For that,

10



we will use Theorem 3.1 obtained in Section 3 for the dual risk model. Let
us introduce a new variable ∆T

0 distributed as the ∆T
i and independent of the

renewal process.

Theorem 4.1. The ruin time τu has a (defective) density at point t ≥ 0 given
by

fτu(t) =

E
[
(−1)M(u+ct) f

∗M(u+ct)

∆T (t−∆T
0 )hM(u+ct)(u+ ct, u/c+ ∆T

0 ) 1{t≥∆T
0 }

]
,

(24)

where h0(.) = 1, and if [M(u + ct) = n], n ≥ 1, and [∆T
0 = d0], d0 ≥ 0, the

function hn(u+ ct, u/c+ d0) is the conditional expectation

hn (u+ ct, u/c+ d0) =

E
{
Gn

[
0
∣∣∣Fu+ct [u+ c(T0 + d0)] , . . . , Fu+ct [u+ c(Tn−1 + d0)]

] ∣∣∣Tn = t− d0

}
.

(25)

Proof. The first-crossing happens at a jump of the claim amount process, so
that deriving the density of τu by a direct reasoning is not easy. A simple
trick consists in passing to an associated dual model. This approach is rather
standard (see the references given in the Introduction). For the sake of clarity,
we recall briefly its principle.

t

x

u

X1
∆T

2

X2 ∆T
3

X3

∆T
4

T1

•
T2

•
T3

•
µ1
−

µ2−

µ3−

τu×

(a) Ruin time in the insurance model. The solid
red line represents the premium income x =
u + ct, and the dashed blue line corresponds to
a trajectory of the claim amount process C(t).

t

x

s

y

−V = −u/c−∆T
1

u

∆T
1

X1

∆T
2

X2

∆T
3

X3

∆T
4

•
T2 −∆T

1•
|

µ2

|
µ3

|

T3 −∆T
1 = τu −∆T

1×

σV×

(b) Ruin time in the dual model with in-
verted characteristics. The solid red line rep-
resents the cost function y = −V + t/c with
V = u/c + ∆T

1 , and the dashed blue line cor-
responds to a trajectory of the profit size pro-
cess.

Figure 2: Boundary crossing problem in the insurance risk model.

A new origin is put at the point (0,∆T
1 ) of the original coordinates. Then,

an anticlockwise rotation of 90◦ is made on Figure 2(a). This yields Figure 2(b)
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in a new system of coordinates, denoted by (s, y). So, we have built a dual risk
model whose characteristics are the inverse of those in the insurance model. Its
wealth process is given by

W (s) = V − s

c
+

M(s)∑
i=1

∆T
i+1, s ≥ 0, (26)

where the cost function is linear with slope 1/c and (random) intercept V =
u/c + ∆T

1 , the ∆T
i+1 become the profits and the Xi correspond to the inter-

arrival times in the OSPP {M(s), s ≥ 0}. Note that the random variable V is
independent of the ∆T

i+1.
As shown by Figure 2, the first-crossing in the insurance model is equivalent

to the first-meeting in the dual model. In fact, we have the simple distributional
identity

τu −∆T
1 =D σV /c− V,

where σV is the first-meeting time in the dual model. From the definition of V ,
this becomes

τu =D

(
σu/c+∆T

1
− u
)
/c. (27)

This identity was already obtained in the past; see, e.g., Shi and Landriault
[39].

Let us fix ∆T
1 = d1 (≥ 0). We note that ∆T

1 is independent of the profit
process in the dual model (26). So, the conditional distribution of σu/c+d1 is

provided by Theorem 3.1. More precisely, we define new random variables T̃i,
i ≥ 1, as the partial sums T̃i =

∑i
j=1 ∆T

j+1, with T̃0 = 0. From (10), (11), we
then know that σu/c+d1 ≥ u+ cd1, with an atom at point u+ cd1 of probability
mass P[M(u+ cd1) = 0], and a density part at point s > u+ cd1 given by

fσu/c+d1
(s|d1) =

1

c
E
[
(−1)M(s)f

∗M(s)

∆T

(s
c
− u

c
− d1

)
hM(s)

(
s,
u

c
+ d1

)
1{M(s)≥1}

]
, (28)

where if [M(s) = n], hn(s, v) with v ≡ u/c+ d1 is the function

hn(s, v) = E
{
Gn

[
0
∣∣∣Fs[c(T̃0 + v)], . . . , Fs[c(T̃n−1 + v)]

] ∣∣∣T̃n = s/c− v
}
. (29)

We now pass to the conditional distribution of τu. Given d1, τu takes values
t ≥ d1. It has an atom at d1 with probability mass P[M(u + cd1) = 0]. For
t > d1, it has a density part which can be expressed from (27) as

fτu(t|d1) = cE
[
fσu/c+d1

(u+ ct)
]
. (30)

Inserting (28) in (30) yields

fτu(t|d1) =

E
[
(−1)M(u+ct)f

∗M(u+ct)

∆T (t− d1)hM(u+ct)

(
u+ ct,

u

c
+ d1

)
1{M(u+ct)≥1}

]
.

(31)

Setting h0(.) = 1, consider the expectation in (31) also in the case where M(u+
ct) = 0. As f∗0∆T (t− d1) = 1{t=d1}, this expectation reduces to 1{t=d1}P[M(u+
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cd1) = 0]. Let us collect the previous results for any time t ≥ 0. We see that
they can be gathered into a single formula given by

P[τu ∈ (t, t+ dt)|d1]/dt =

E
[
(−1)M(u+ct)f

∗M(u+ct)

∆T (t− d1)hM(u+ct)

(
u+ ct,

u

c
+ d1

)
1{t≥d1}

]
.

(32)

The function hn(u + ct, u/c + d1), for n ≥ 1, is provided by (29) in which
s = u+ ct and v ≡ u/c+ d1.

To obtain the distribution of τu, it suffices to take the expectation of (32)
and (29) with respect to ∆T

1 (= T1). Note that T̃i = Ti+1 − T1 and T̃i =D Ti,
i ≥ 1. Remember also the definition of ∆T

0 (given just before (24)). Using these
two points, we then find that the variable τu has a (defective) density, fτu(t),
given by the formulas (24), (25).

This result highlights the special algebraic structure underlying the density
of τu. It is much simplified in the case where the claim amounts are mixed
exponentials, i.e when they correspond to the spacing levels in a mixed Poisson
process {M(t), t ≥ 0} (see case (3) of level spacings in Section 2).

Corollary 4.2. If the Xi’s are mixed exponentials, then

fτu(t) =
1

u+ ct
E
[(
u+ c∆T

0

)
f
∗M(u+ct)

∆T (t−∆T
0 ) 1{t≥∆T

0 }

]
, t ≥ 0. (33)

Proof. When M(u+ ct) = 0, (33) is equivalent to (24) (as h0(.) = 1). Consider
now M(u + ct) = n, n ≥ 1. By assumption, we know that Ft(s) = s/t for
s ∈ [0, t]. Thus, (25) can be rewritten as

hn (u+ ct, u/c+ d0)

= E
{
Gn

[
0
∣∣∣u+ c(T0 + d0)

u+ ct
, . . . ,

u+ c(Tn−1 + d0)

u+ ct

] ∣∣∣Tn = t− d0

}
=

(
c

u+ ct

)n
E
[
Gn

(
−u
c
− d0

∣∣∣T0, . . . Tn−1

) ∣∣∣Tn = t− d0

]
, n ≥ 1, (34)

using the relation (54) for Gn.
Since the ∆Ti are i.i.d. variables, Property A.2 can be applied to the condi-

tional expectation of Gn in (34). This gives

hn(u+ ct, u/c+ d0) = [c/(u+ ct)]n (−u/c− d0) (−u/c− d0 − t+ d0)
n−1

= (−1)n(u+ cd0)/(u+ ct), n ≥ 1. (35)

Inserting (35) in (24) then yields formula (33).

From (33), we easily retrieve the result derived by Borovkov and Dickson
[10] in the case where the claim sizes are i.i.d. exponentials (see their Theorem
1). In our framework, that means that {M(t), t ≥ 0} is a Poisson process.

Example. Suppose that {N(t), t ≥ 0} is a Poisson process of parameter λ,
and that the claim amounts are mixed exponentials with an exponential mixing
variable of parameter β. So, the process {M(t), t ≥ 0} is a negative binomial
process of parameters γ = 1 and β (see Example (b) in Section 3). Then, M(t)
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is geometric with probability of success β/(t+ β), and from (33), the density of
τu is given explicitly by

fτu(t) =

(
β

u+ ct+ β

)
f∆T

0
(t) +

1

u+ ct

∞∑
n=1

(
β

u+ ct+ β

)(
u+ ct

u+ ct+ β

)n
E
[
(u+ c∆T

0 )f∗n∆T (t−∆T
0 )1{t≥∆T

0 }

]
. (36)

As ∆T
0 is exponential of parameter λ, the expectation in (36) becomes

E [. . .] =

∫ t

0

(u+ cx)
e−λ(t−x)(t− x)n−1λn

(n− 1)!
λe−λxdx

=
λn+1e−λt

(n− 1)!

∫ t

0

(u+ cx)(t− x)n−1dx

=
λn+1e−λt

(n− 1)!

(
utn

n
+

ctn+1

n(n+ 1)

)
. (37)

Inserting (37) in (36) then yields

fτu(t) =
βλ

u+ ct+ β
e−λt +

βλu

(u+ ct)(u+ ct+ β)

(
e−λtβ/(u+ct+β) − e−λt

)
+

βc

(u+ ct)2

(
e−λtβ/(u+ct+β) − e−λt − λt u+ ct

u+ ct+ β
e−λt

)
.

5 Dual with profits as spacing levels

Let us go back to a dual risk model (1) of Sparre-Andersen type in which the
profit sizes are distributed as spacing levels in an OSPP. The wealth process has
still the form (8):

W (t) = v − at+ V (t), where V (t) =

M(t)∑
i=1

Yi, t ≥ 0, (38)

but this time, {M(t), t ≥ 0} is a renewal process and the Yi are non-negative
random variables, with a level spacing distribution. These Yi’s generate an
OSPP {N(t), t ≥ 0}, say. As in Section 3, the profit arrival times are denoted
by Si, and the inter-arrival times by ∆S

i , i ≥ 1, with S0 = 0.
In insurance, the ruin probability represents an important risk measure.

Over an infinite horizon, it has been the object of many research works. For
practical purposes, it is more appropriate to consider a finite horizon. Recently,
Lefèvre and Picard [28] determined the finite-time ruin probability for the or-
dered insurance model with i.i.d. claim amounts. Our purpose here is to obtain,
by duality, the finite-time ruin probability in the dual model above.

Let us define ϕv(t) as the probability of non-ruin until time t, i.e.,

ϕv(t) = P(σv > t), t ≥ 0. (39)

Obviously, ϕv(t) = 1 if t < v/a. Thus, from now on, we suppose that t ≥ v/a.
In the next proposition, we will express ϕv(t) in terms of a family of Appell
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polynomials. A short presentation of these polynomials is given in the Appendix
A. The Appell and A-G polynomial families are closely related but different.
Given a set of real numbers U = {ui, i ≥ 1}, the Appell polynomial of degree n
in x is denoted by An(x|U). As for Theorem 4.1, we introduce a new variable
∆S

0 distributed as the ∆S
i and independent of the renewal process.

Theorem 5.1. For t ≥ v/a, the non-ruin probability ϕv(t) can be expressed as

ϕv(t) = E
[
gN(at−v)(at− v, v/a−∆S

0 ) 1{∆S
0≤v/a, SN(at−v)≤t−∆S

0 }

]
, (40)

where if [N(at− v) = n], n ≥ 0, and [∆S
0 = d0], 0 ≤ d0 ≤ v/a, the function

gn(at− v, v/a− d0) is the conditional expectation

gn(at− v, v/a− d0)

= E
{
An

[
1
∣∣∣Fat−v [a(S1 + d0 − v/a)+] , . . . , Fat−v [a(Sn + d0 − v/a)+]

]}
. (41)

Proof. We apply duality to convert the first-meeting problem for the dual model
(38) into an equivalent first-crossing problem for the insurance model with in-
verted characteristics. Such a reasoning was followed e.g. by Dimitrova et al.
[18]. The primal result used here is a simple and compact formula that was
obtained by Lefèvre and Picard [28] for the ordered insurance model.

Let us consider Figure 1(a). A new system of coordinates, denoted by (s, y),
is constructed with its origin put at the point (0,∆S

1 ) of the original coordinates.
Then, an anticlockwise rotation of 90◦ is made, which yields Figure 1(b). In
that way, we have constructed an insurance model whose characteristics are the
inverse of those in the dual model. Its reserve process is defined as

R(s) = U +
s

a
−
N(s)∑
i=1

∆S
i+1, (42)

where the premium rate is equal to 1/a, the initial reserves are of (random)
amount U = v/a−∆S

1 , the ∆S
i+1 become the claim amounts and the profits Yi

correspond to the inter-arrival times in the OSPP {N(s), s ≥ 0}. Observe that
the random variable U is independent of the ∆S

i+1.
From Figure 1, the first-meeting in the dual model is equivalent to the first-

crossing in the insurance model. This gives the distributional identity

σv −∆S
1 =D τU/a+ U,

where τU is the first-crossing time in the insurance model. Using the definition
of U , we have

σv =D (τv/a−∆S
1

+ v)/a. (43)

Let φU (s) = P(τU > s), the probability of non-ruin until time s in the
insurance model. From (39) and (43), we can rewrite the probability ϕv(t) as

ϕv(t) = P
(
τv/a−∆S

1
> at− v

)
= E

[
φv/a−∆S

1
(at− v)

]
, (44)

where the expectation is taken with respect to the variable ∆S
1 (= S1). Note

that if ∆S
1 > v/a, the initial reserves are negative so that ruin arises at time 0.
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For the insurance model (42) where {N(s), s ≥ 0} is an OSPP, Lefèvre and
Picard [28] derived a close formula for the probability of non-ruin over a finite
horizon. In the present case, however, we have to take into account that the
initial reserves U = v/a − ∆S

1 are random and can be negative. So, let S̃i
denote the partial sums S̃i =

∑i
j=1 ∆S

j+1, i ≥ 1, with S̃0 = 0. Making a simple
adaptation of that formula, we can then express the non-ruin probability until
time s as

E[φU (s)] = E
[
gN(t)(s, U) 1{U≥0,S̃N(s)≤U+s/a}

]
, (45)

where if [N(s) = n], n ≥ 0, and [U = u], u ≥ 0, gn(s, u) is given by

gn(s, u) = E
{
An

[
1
∣∣∣Fs[a(S̃1 − u)+], . . . , Fs[a(S̃n − u)+]

]}
. (46)

From (44), (45) and (46), we deduce that

ϕv(t) = E
[
gN(at−v)(at− v, v/a−∆S

1 ) 1{∆S
1≤v/a, S̃N(at−v)≤t−∆S

1 }

]
, (47)

where if [N(at− v) = n], n ≥ 0, and [∆S
1 = s1], 0 ≤ s1 ≤ v/a,

gn(at− v, v/a− s1) = (48)

E
{
An

[
1
∣∣∣Fat−v[a(S̃1 − v/a+ s1)+], . . . , Fat−v[a(S̃n − v/a+ s1)+]

]}
.

Finally, as S̃i = Si+1 − S1 =D Si, i ≥ 1, and using the definition of ∆S
0 , we

see that (47), (48) match formulas (40), (41).

Theorem 5.1 compares with Proposition 2.2 obtained by Dimitrova et al.
[18] for another dual risk model in which the profit arrival process is arbitrary
and the profit sizes are linear combinations of independent exponentials.

6 Concluding remarks

Our study deals with three ruin problems for different risk models with depen-
dence. The first risk process is a dual model where the profit sizes are i.i.d.
but their arrival process satisfies the order statistic property. Using a direct
analysis, we obtain the ruin time distribution for the model. The second risk
process is a Sparre-Andersen insurance model where claims arrive according to a
renewal process and their amounts have a level spacing distribution. We derive
here the (defective) ruin time density by applying a duality argument to the
previous ruin problem. The third risk process is a dual model but where the
profit sizes have a level spacing distribution and their arrival is described by a
renewal process. Using again a duality argument, we obtain the probability of
non-ruin over a finite horizon. In all cases, the formulas have a clear algebraic
structure and can be used for numerical computation. Some illustrations for
simpler variants of these models can be found, e.g., in Goffard and Lefèvre [23]
and Dimitrova et al. [18]. Of course, other ruin topics could be studied by a
similar duality approach. To close, we mention that an alternative approach
to such ruin problems consists in working with Laplace transforms. This is the
method followed e.g. in Perry et al. [32] and the references therein.
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A Appell and A-G polynomials

Appell and Abel-Gontcharov (A-G) polynomials are well-known in mathematics.
They can be used to solve various problems in statistics and applied probabilty.
A short presentation is provided below. We refer e.g. to Lefèvre and Picard [30]
for a review with applications in risk modelling.

Let U = {ui, i ≥ 1} be a sequence of reals, non-decreasing in our context.
To U is attached a (unique) family of Appell polynomials of degree n in x,
{An(x|U), n ≥ 0}, defined as follows. Starting with A0(x|U) = 1, the An(x|U)
satisfy the differential equations

A(1)
n (x|U) = nAn−1(x|U),

with the border conditions

An(un|U) = 0, n ≥ 1. (49)

So, each An, n ≥ 1, has the integral representation

An(x|U) = n!

∫ x

un

[∫ yn

un−1

dyn−1 . . .

∫ y1

u1

dy1

]
dyn. (50)

In parallel, to U is attached a (unique) family of Abel-Gontcharov (A-G)
polynomials of degree n in x, {Gn(x|U), n ≥ 0}. Starting with G0(x|U) = 1,
the Gn(x|U) satisfy the differential equations

G(1)
n (x|U) = nGn−1(x|EU),

where EU is the shifted family {ui+1, i ≥ 1}, and with the border conditions

Gn(u1|U) = 0, n ≥ 1.

So, each Gn, n ≥ 1, has the integral representation

Gn(x|U) = n!

∫ x

u1

[∫ y1

u2

dy2 . . .

∫ yn−1

un

dyn

]
dy1. (51)

Note that both polynomial families are sometimes defined without the factor
n! in (50) and (51). Of course, these polynomials are related through the identity

Gn(x|u1, . . . , un) = An(x|un, . . . , u1), n ≥ 1. (52)

However, the two families (i.e. considered for all n ≥ 0) are distinct and enjoy
quite different properties.

Now, from (50) and (51), we directly see that the polynomials An and Gn,
n ≥ 1, can be interpreted in terms of the joint distribution of the order statistics
(U1:n, . . . , Un:n) of a sample of n independent uniform random variables on [0, 1].
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Proposition A.1. For 0 ≤ u1 ≤ . . . ≤ un ≤ x ≤ 1,

P [U1:n ≥ u1, . . . , Un:n ≥ un and Un:n ≤ x] = An(x|u1, . . . , un),

while for 0 ≤ x ≤ u1 ≤ . . . ≤ un ≤ 1,

P [U1:n ≤ u1, . . . , Un:n ≤ un and U1:n ≥ x] = (−1)nGn(x|u1, . . . , un). (53)

These representations play a key role in the first-passage problems discussed
in the paper. We will also use the simple relation

An(x|a+ bU) = bnAn [(x− a)/b |U ] , n ≥ 1, (54)

and similarly for Gn. An important particular case in our study is when the
parameters in U are random and correspond to partial sums of exchangeable
random variables.

Proposition A.2. Let {Xn ; n ≥ 1} be a sequence of exchangeable random
variables, of partial sums Sn =

∑n
k=1Xk with S0 = 0. Then, for n ≥ 1,

E [An(x|S1, . . . , Sn)|Sn] = xn−1(x− Sn), (55)

E [Gn(x|S0, . . . , Sn−1)|Sn] = x(x− Sn)n−1. (56)

Proof. The identity (55) was derived in Proposition A.1 of Lefèvre and Picard
[28]. For (56), we write

E [Gn(x|S0, . . . , Sn−1)|Sn] = E [Gn(x− Sn|S0 − Sn, . . . , Sn−1 − Sn)|Sn]

= (−1)nE [Gn(Sn − x|Sn, . . . , Sn − Sn−1)|Sn]

= (−1)nE [An(Sn − x|Sn − Sn−1, . . . , Sn)|Sn] , (57)

using successively the relations (54) and (52). As the Xn’s are exchangeable,
we deduce from (57) and (55) the desired formula (56).
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