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Abstract

Insurance loss distributions are characterized by a high frequency of small claim amounts and a lower,

but not insignificant, occurrence of large claim amounts. Composite models, which link two probability

distributions, one for the "body" and the other for the "tail" of the loss distribution, have emerged in the

actuarial literature to take this specificity into account. The parameters of these models summarize the

distribution of the losses. One of them corresponds to the breaking point between small and large claim

amounts. The composite models are usually fitted using maximum likelihood estimation. A Bayesian approach

is considered in this work. Sequential Monte Carlo samplers are used to sample from the posterior distribution

and compute the posterior model evidences to both fit and compare the competing models. The method is

validated via a simulation study and illustrated on an insurance loss dataset.
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1 Introduction

The distribution of losses in property and casualty insurance is characterized by a high frequency of small

claim amounts and a lower, but not insignificant, frequency of considerably larger claim amounts. Composite

models, that combine two models one for the body and the other for the tail of the loss distribution, have

emerged in the actuarial science litterature as a response to this specificity. A model that accounts for both
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extreme and moderate claim amounts is necessary to inform the insurance company decision process regarding

premium calculation, risk capital allocation and risk transfer optimization.

The breakpoint between small and large claims is a key parameter in composite models. Two approaches

are commonly used in practice to determine it. The first, known as the fixed-threshold approach, consists of

choosing a threshold using tools from extreme value theory before adjusting the components of the composite

models. It relies on famous graphical visualizations such as the mean-excess plot [21], the Hill plot [28] or

the Gerstengarbe plot [20]. Automatic threshold selection methods have been implemented to mitigate the

subjectivity inherent in locating a stable area on a curve. The goal is often to minimize the root mean squared

error around the tail index estimate, see Caeiro and Gomes [9], or to pass a goodness-of-fit test, see Guillou and

Hall [25]. These techniques rely on the hypothesis that the data points in excess of the threshold are distributed

according to a Generalized Pareto Distribution (GPD). For an overview on extreme value data analysis, I refer

the reader to the textbook of Beirlant et al. [4]. Another approach, less used in practice but widely studied in

the actuarial literature, treats the threshold like any other parameter of the composite model and performs a

simultaneous estimation. I will refer to this procedure as the free-threshold approach. A survey on the use of

composite models and threshold selection methods on insurance data is conducted in the work of Wang et al.

[48]. Maximum likelihood estimation is commonly used to fit several combinations of models for the body

and the tail of the claim amounts distribution. The adequacy of each model is then measured using standard

information criteria, see for instance Grün and Miljkovic [24].

The present work proposes to fit and compare composite models in a Bayesian way. Bayesian statistics take the

model parameters to be random variables. Inference is drawn from the posterior distribution of the parameters

obtained by updating the a priori assumptions via the likelihood function of the data, for an overview see the

book by Geldman et al. [18]. The posterior distribution is often unavailable and must be approximated by

an empirical distribution. Markov chain Monte Carlo (MCMC) simulation schemes, such as the well known

Metropolis-Hasting and Gibbs samplers, have become the go to techniques to sample from the posterior

distribution. Probabilistic programming softwares like WINBUGS [34], JAGS [38], STAN [10] and PYMC [41],

have been designed over the years so that practitioners do not have to worry about the fine tuning of these

sophisticated algorithms. The lognormal-Pareto composite model of Scollnick [43] is actually an example of

the WINBUGS documentation, see [34, Examples Vol. III]. The application of Bayesian techniques to composite

models enables to quantify the uncertainty around the threshold parameter, as noted in the survey of Scarrot

and MacDonald [42]. Instead of the standard MCMC sampler, a Sequential Monte Carlo Sampler (SMC) is
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put together. This algorithm builds a sequence of empirical distributions, made of weighted particles, that

targets the posterior distribution during the final iteration. Generic SMC samplers are described in the seminal

paper of Del Moral et al. [36]. An approximation of the posterior distribution normalizing constant, referred

to as the marginal likelihood, follows from the weights of the successive particle clouds. MCMC algorithms

bypass the evaluation of this constant which is nevertheless necessary for the evaluation of Bayes factors to

select the right model, see Kass and Raftery [31]. In addition to providing an approximation of the marginal

likelihood, SMC samplers can sample from complicated multimodal posterior distributions, save the trouble

of tuning some hyperparameters and are easy to paralellize which is a key feature in the era of multi-core

processor computers. The multimodality of the posterior distribution around the threshold parameter has

been encountered in practice by Cabras and Castellanos [8, Figure 3].

The main contribution of this work is to provide an efficient computational tool to fit and compare a myriad

of composite models with a fixed or free threshold. This tool takes the form of a Python package available

on pip1 for anyone to use. The posterior distribution of the parameters and the posterior probability of the

models make it possible to account for the uncertainty around the values of the parameters and the model

to be used. This uncertainty can then be taken into account when estimating quantities of interest to risk

managers, such as extreme quantiles or probabilities of ruin at one year, via credible sets. It is also possible

to use the posterior probabilities of the model as weights to combine the estimate provided by each model.

This procedure, known as Bayesian Model Averaging (BMA), see Kass and Raftery [31], is investigated. This

work can be viewed as the Bayesian counterpart of the work of Grün and Miljkovic [24]. Besides the inference

method, the main difference lies in the regularity assumptions of the probability density function (pdf) at

the threshold parameter. Namely, the authors of [24] impose continuity and differentiability at the threshold

whereas the models considered here can be discontinuous or only continuous but not differentiable. Another

difference is that the algorithm allows the user to set in advance or not the breaking point between low and

high severities to enable the comparison between the fixed and free threshold approach.

The remainder of the paper is organized as follows. Section 2 provides a brief overview on composite loss

models and their use for risk management purposes. Section 3 recalls the principles of Bayesian statistics and

presents the algorithmic details of the sequential Monte Carlo samplers used to fit the composite models. A

simulation experiment is conducted in Section 4 to assess the consistency and finite-sample performance of

the estimation and model selection procedures. Section 5 illustrates the application of the SMC algorithm on

1https://pypi.org/project/bayes-splicing/
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the famous danish fire insurance data.

2 Composite models

Losses in insurance are usually modelled by nonnegative random variables with probability density function

(pdf) denoted by f (x;θ), where θ ∈Θ ⊂R
d is the parameter space and d > 0 its dimension. The goal is then to

find the parameter value θ̂ that best explains the data x = (x1, . . . ,xn). This is usually achieved by maximizing

the likelihood function L(x|θ). In the case of independent and identically distributed (iid) data (which is the

case considered here), the likelihood function is given by

L(x|θ) =
n∏
i=1

f (xi ;θ).

The occurence of extreme losses makes the vast majority of the simple parametric models (2-3 parameters)

inadequate. The lack of fit of these simple models leads to consider more flexible ones.

2.1 Definition and assumptions

Composite models, sometimes called splicing or spliced model, combine two models, one for the "body" and

the other for the "tail" of the distribution. The pdf of a composite model is defined as

f (x) =


p f1(x)
F1(γ) , si x < γ,

(1− p) f2(x)
1−F2(γ) , si x ≥ γ,

(1)

where f1,F1, f2, and F2 are the pdf and cumulative distribution function (cdf) of the body and the tail of the

loss distribution respectively. The parameter p ∈ (0,1) is referred to as the mixing parameter. The threshold

parameter γ > 0 is the breaking point that distinguishes small claim amounts from large ones. Such models

appeared in the statistical literature as early as the work of Mendes and Lopez [14] who used maximum

likelihood estimation to infer the parameters. A Bayesian framework was proposed by Berhens et al. [3] to

enable the quantification of the uncertainty around the threshold parameter. A commonly used simplification

of model (1) sets

p = F1(γ), (2)

making γ the p-quantile of the F1 distribution. It has been pointed out several times that the potential

discontinuity at x = γ of the density (1) could pose problems in some practical situations. Continuity at the

threshold f (γ−) = f (γ+) is achieved by setting

p =
f1(γ)
F1(γ)

/ f2(γ)
1−F2(γ)

. (3)
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Composite models appeared in the actuarial science litterature with the work of Cooray and Ananda [11]. The

authors further imposed differentiability at the threshold f ′(γ−) = f ′(γ+) which leads to loose another degree

of freedom by letting γ be the solution of

f ′1 (γ)
f1(γ)

−
f ′2 (γ)
f2(γ)

= 0, (4)

see the work of Grün and Miljkovic [24]. Wang et al [48] have reported that imposing such a condition tends

to make the model not flexible enough leading to the conclusion that practitionners would be better off by

choosing a threshold before fitting a general composite model.

In the present paper, the bulk and tail of composite models are selected from the list in Table 1. In contrast to

Name Parameters pdf

Exponential Exp(δ) δ > 0 δe−δx, x > 0

Gamma Gamma(r,m) r,m > 0 xr−1e−x/m

Γ (r)mr , x > 0

Weibull Weibull(k,β) k,β > 0 k
β

(
x
β

)k−1
e−(x/β)k , x > 0

Lognormal Lognormal(µ,σ ) µ ∈R, σ > 0 1
xσ
√

2π
exp

[
− (log(x)−µ)2

2σ2

]
, x > 0

Inverse-Gaussian Inverse-Gaussian(µ,λ) µ,λ > 0
√

λ
2πx3 exp

(
λ(x−µ)2)

2µ2x

)
, x > 0

Inverse-Gamma Inverse-Gamma(r,m) r,m > 0 e−m/xmr

xr+1γ(r) , x > 0

Inverse-Weibull Inverse-Weibull(k,β) k,β > 0 kβkx−k−1e−(β/x)k , x > 0

Lomax Lomax(α,σ ) α,σ > 0 ασα

(σ+x)α+1 , x > 0

Log-Logistic Log-Logistic(β,σ ) β,σ > 0 βσβxβ−1

(σβ+xβ )2 , x > 0

Burr Burr(α,β,σ ) α,β,σ > 0 αβσαβxβ−1

(σβ+xβ )α+1 , x > 0

Pareto Pareto(α,γ) α,γ > 0 γα

xα+1 , x > γ

Generalized Pareto GPD(ξ,σ ,γ) ξ,σ ,γ > 0 σ−1
[
1 + ξ(x−γ)

σ

]−(ξ+1)/ξ
, x ≥ 0

Table 1: List of distribution for bulk and the tail of the composite models.

many previous works in the statistical and actuarial science litterature, the tail component of the composite

model may not belong to the Pareto distribution family. Three composite model settings are considered. The

"discontinuous" composite model assumes that the mixing parameter p has a prior distribution (uniform or
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beta), the "simple" composite model sets p as in (2), and lastly the "continuous" composite model sets p as in

(3).

Remark 2.1. Imposing differentiability at x = γ entails the loss of two degrees of freedom by letting the threshold

be the solution of (4) and therefore depend on the other parameters of the composite models. The practical issue is

that the uniqueness of the solutions of (4) is far from being granted. A numerical root finding procedure would be

necessary which will slow down the inference process. A tedious case by case study of the 120 possible composite

models would be necessary. Such a study has been carried out in the litterature for a few particular cases including the

lognormal-Pareto case, see Cooray and Ananda [11] and Scollnick [43], and the Weibull-Pareto case, see Scollnick and

Sun [44] and Abu Bakar et al. [1]. In addition to general composite model being discontinuous or continuous, The

bayes-splicing package implements three composite models with continuity and differentiability at the threshold

including the lognormal-Pareto model, the Weibull-Pareto model and the gamma-Pareto model described in Example 1.

Example 1. If f1 is the pdf of the gamma distribution Gamma(r,m) and f2 is the pdf of the Pareto distribution

Pareto(α,γ), then continuity and diffrentiability of (1) lead to express m and p in terms of the other parameters as

m =
γ

k +α
, p =

αΓ (k)F1(γ ;r,m)ek+α(k +α)−k

1 +αΓ (k)F1(γ ;r,m)ek+α(k +α)−k
,

where F1(γ ;r,m) is the gamma distribution cdf.

The bayes-splicing package is able to fit a total of 375 loss models when accounting for all the distributions

in Table 1 either considered separately or as component of a splicing model (with three possible settings

"discontinuous", "simple" or "continuous"). The models are fitted and compared using state of the art Bayesian

statistics computational tools which are presented in Section 3. The goal is to provide the right take on the loss

distribution to assess the level of capital required for solvency purposes defined in Section 2.2.

2.2 Composite models usage in actuarial science

Over a given time period, a year say, a non-life insurance company handles a random number of claims N ,

each of which is associated to a randomly sized compensation forming hereby a sequence U1, . . . ,UN . Usually,

the U ′i s are taken to be independent and identically distributed random variables, independent from the claim

frequency N . The total cost over one year amounts to

S =
N∑
i=1

Ui . (5)

The random sum (5) corresponds to the liability of the insurer within what is called a collective model, see for

instance the book of Klugman et al. [32]. Actuaries and risk managers typically want to quantify the risk of
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large losses by a single comprehensible number, a risk measure. One popular risk measure is the Value-at-Risk

which corresponds to a high order level quantile of the distribution of S. It is used by risk managers in banks,

insurance companies, and other financial institutions to allocate risk reserves and to determine risk margins.

The right tail of U has a strong influence on the higher order quantile of S and must be modelled appropriately,

using for instance a composite model. One way to mitigate the risk associated with large claims is to transfer

some of it to a reinsurance company. The aggregate claim sizes is then divided into

S = D +R,

where D is the amounts that stays with the first-line insurer after reinsurance and R is the amount paid by the

reinsurer. The first-line insurer receives premiums, that sum up to Π, from the policyholders and part of it is

ceded to the reinsuer. We have

Π = ΠR +ΠD ,

where ΠR is the reinsurance premium ceded to the reinsurer while ΠD is the premium retained by the first-line

insurer. A common reinsurance agreement in property and casualty insurance is the Excess-of-Loss (xol) one

with

R =
N∑
i=1

min{(Ui − P )+,L}, and D =
N∑
i=1

[
min{Ui , P }I{Ui≤P+L} + (Ui −L)I{Ui>P+L}

]
, (6)

where (·)+ denotes the positive part, P is the priority and L is the limit. The first-line insurer seeks values

of P and L to optimize its expected surplus under some solvency constraints. We focus in this work on the

left quantile of the distribution of ΠD −D to determine a risk reserve. For a comprehensive overview on

the statistical and actuarial aspect of reinsurance, the reader is referred to the book of Albrecher et al. [2].

The claim sizes are assumed to be iid from a composite model. The claim frequency is Poisson distributed

with mean λ > 0. The premiums are defined by the expectation principle with a safety loading of 5% and

computed using numerical integration2. Once the parameters of the composite model have been inferred then

the quantiles of the insurer’s surplus are calculated via crude Monte Carlo simulations. Let us move on to the

Bayesian estimation procedure to fit and compare the composite models.

3 Bayesian inference via a sequential Monte Carlo sampler

Bayesian statistics defines the posterior distribution of the model parameters θ given the data x = (x1, . . . ,xn) as

π(θ|x) =
L(x|θ)π(θ)

Z(x)
. (7)

2integrate.scipy method from the scipy python library https://docs.scipy.org/doc/scipy/reference/generated/scipy.

integrate.quad.html
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The posterior distribution (7) follows from applying Bayes’ rule to update the prior distribution π(θ) using the

likelihood function L(x|θ). Credible sets as well as point estimates can then be derived from π(θ|x) to draw

inference on θ. The only issue is the denominator in (7) which is a normalizing constant given by

Z(x) =
∫
Θ

L(x|θ)π(θ)dθ. (8)

The above integral rarely admits a closed-form expression except when the model for the data has a conjugate

prior distribution. Unfortunately, conjugate prior distributions almost only arise in exponential families

of probability distributions, see Diaconis and Ylvisaker [15]. In practice, one samples from the posterior

distribution via Markov Chain Monte Carlo (mcmc) schemes. The Metropolis-Hasting random walk builds a

sequence (θi)i≥0 by applying a Markov kernel KH (·|θi) to the current parameter value θi , i ≥ 0. The parameter

H corresponds to the magnitude of the perturbation. A new parameter value θ∗ ∼ KH (·|θi) is accepted with

probability

α(θi ,θ∗) = max
[
1,

L(x|θ∗)π(θ∗)KH (θ∗|θi)
L(x|θ1)π(θi)KH (θi |θ∗)

]
, (9)

in which case θi+1 = θ∗, otherwise θi+1 = θi . The resulting sequence (θi)i≥0 forms a Markov chain trajectory

having the posterior distribution as limiting distribution. A standard choice for the Markov kernel is the

multivariate normal distribution

KH (·|θ) ∼ Norm(µ = θ,Σ = H), (10)

where H is a matrix that matches the dimension of θ. The Metropolis-Hasting random walk efficiency,

understood as the speed of convergence of the Markov chain toward its asymptotic distribution, decreases

with the dimension of the parameters. The workaround is to turn to another well-known mcmc technique

that generates a sequence (θi)i≥0 called Gibbs sampling. To sample from a multivariate posterior distribution

π(θ|x), a Gibbs sampler samples from the univariate conditional distributions defined as

π(θj |x,θ1, . . . ,θj−1,θj+1, . . . ,θd), for j = 1, . . . ,d,

where θ = (θ1, . . . ,θd). The current parameter value θi is updated component per component starting with the

first one

θi
1 ∼ π(·|x,θi

2, . . . ,θ
i
d), (11)

before moving to the second one

θi
2 ∼ π(·|x,θi

1,θ
i
3, . . . ,θ

i
d), (12)

and so on. The sequence (θi)i≥0 forms a Markov chain trajectory whose limiting distribution is the posterior

distribution π(θ|x). The marginal distributions in (11), (12), etc., are usually unknown and one actually uses
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the Metropolis-Hasting scheme within the Gibbs iterations to sample from them. The Metropolis-Hasting within

Gibbs type algorithms admit some drawbacks. First the algorithm must be initialized. In practice, several

chains are launched from different starting points θ0 to verify if they all converge toward the same distribution.

Second, the H parameter of the multivariate normal kernel in (10) must be tuned to ensure good sampling

properties. It should reflect the variance of the posterior distribution which is unknown. The practical solution

is to implement an adaptive procedure to adjust H on the fly to reach an acceptance rate of 23.4% which is

deemed optimal, see the work of Roberts et al. [40]. Third, the trajectory generation cannot be parallelized.

Lastly, mcmc algorithms allow one to sample the posterior distribution of any models as long as the likelihood

function has a tractable expression by avoiding the evaluation of the normalizing constant in (7). Indeed, the

latter does not appear in the acceptance probability expression in (9). The normalizing constant is nevertheless

important for Bayesian model selection as explained below.

Consider a set of competing modelsM = {m1, . . . ,mJ } and define a random variable M having a Probability

Mass Function (pmf) concentrated on M. A prior distribution such that P(M = mj ) = π(mj ) ≥ 0, for j =

1, . . . , J, and
∑J

j=1π(mj ) = 1 can then be specified and updated given the data to yield the posterior model

evidence as

π(mj |x) =
L(x|mj )π(mj )∑J
i=1L(x|mi)π(mi)

, j = 1, . . . , J. (13)

The likelihood L(x|m) of model m ∈M follows from integrating over the possible values of the parameter θ as

L(x|m) =
∫
Θ

L(x|m,θ)π(θ|m)dθ,

which corresponds exactly to the normalizing constant in (8). The best model achieves the highest model

evidence (13). Another use of the posterior probabilities is the weighting of the estimation of the different

models. Denote by ∆ a quantity. It is possible to combine the estimation ∆̂j of each model mj as

∆̂ =
J∑

j=1

∆̂jπ(mj |x).

This ensemble estimation procedure, known as Bayesian Model Averaging, is detailed in the work of Hoeting

et al. [29] and tested out in Section 4.

This section describes a sequential Monte Carlo algorithm which allows one to sample from any posterior

distributions while providing an approximation of the normalization constant. The implementation is effortless

to parallelize and its hyperparameters are straigtforward to tune. Section 3.1 provides a quick reminder of the

importance sampling principle required to understand the smc algorithm detailed in Section 3.2.
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3.1 Importance sampling

Bayesian inference reduces to evaluating quantities such as

Eπ(θ|x)(ϕ) =
∫
Θ

ϕ(θ)π(θ|x)dθ, (14)

where Eπ(θ|x) is the expectation operator with respect to the posterior distribution and ϕ is some measurable

application. The posterior mean, often used as point estimate, corresponds to the case ϕ(θ) = θ. The

expectation (14) is evaluated through its Monte Carlo approximation

Eπ(θ|x)(ϕ) ≈ 1
K

K∑
i=1

ϕ(θi), (15)

where θ1, . . . ,θK is an iid sample distributed as π(θ|x). Importance sampling samples from a distribution g,

instead of π(θ|x), either because it is more convenient or because that reduces the variance associated to the

Monte Carlo estimator (15). The approximation of the normalizing constant relies on the following identity

Eπ(θ|x)(ϕ) =
∫
Θ

ϕ(θ)π(θ|x)dθ

=
∫
Θ

ϕ(θ)
L(x|θ)π(θ)

Z(x)
dθ

= Z(x)−1
∫
Θ

ϕ(θ)
L(x|θ)π(θ)

g(θ)
g(θ)dθ

= Z(x)−1
∫
Θ

ϕ(θ)w(θ)g(θ)dθ

= Z(x)−1
Eg (ϕ ·w),

where w(θ) = L(x|θ)π(θ)/g(θ) is an unnormalized weight function. Taking ϕ(θ) = 1 yields the following

expression of the normalizing constant

Z(x) = Eg (w),

which may be approximated by

Z(x) ≈ 1
K

K∑
i=1

w(θ̃i),

where θ̃1, . . . , θ̃N is an iid sample generated from the proposal g. Importance sampling ultimately yields a

cloud of weighted particles {Wi , θ̃i}, where

Wi =
w(θ̃i)∑K
j=1w(θ̃j )

, i = 1, . . . ,K,

whose empirical distribution targets the posterior distribution in the sense that

K∑
i=1

Wiϕ(θ̃i)→ Eπ(θ|x)(ϕ), for N →∞,
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for any measurable application ϕ. The main challenge when using importance sampling is to find a suitable

importance distribution g. If the purpose of g is to be substitute for π(·|x) then the Effective Sample Size

(ESS) of the particle cloud must be high enough. The ESS is an indicator taking values between 1 and N that

measures the degeneracy of the cloud of particles. It corresponds to the size of an iid sample that would match

the empirical variance of the cloud of weighted particles {(Wi , θ̃i), i = 1, . . . ,N }. The ESS is estimated by

ESS ≈ 1∑K
i=1W

2
i

,

as suggested in Kong et al. [33].

The sequential Monte Carlo algorithm presented in the next section bypasses the choice of a proposal distri-

bution by constructing a sequence of intermediary distributions while maintaining an appropriate effective

sample size.

3.2 Sequential Monte Carlo algorithmic details

A sequential Monte Carlo algorithm builds a sequence of distribution πs(θ|x), s = 0, . . . , t starting from the

prior distribution π0(θ|x) = π(θ) and ending on the posterior πt(θ|x) = π(θ|x). To build this sequence of

distribution sequence πs(θ|x), s = 0, . . . , t, we consider simulated annealing, see Neal [37]. This technique

consists in gradually activates the likelihood function as

πs(θ|x) =
L(x|θ)τsπ(θ)

Zs
, s = 0, . . . , t, (16)

where τs, s = 0, . . . , t is a sequence of real numbers such that 0 = τ0 < τ1 < . . . < τt = 1, and the normalizing

constant is given by

Zs =
∫
Θ

L(x|θ)τsπ(θ)dθ.

The smc algorithm initializes a cloud of particles using the prior distribution as

θ
(0)
i

i.i.d.∼ π(θ), and W
(0)
i =

1
K
, for i = 1, . . . ,K.

To move from one intermediary distribution πs to the next πs+1, the smc algorithm takes the cloud of particles

{(W s
i ,θ

s
i ), i = 1, . . . ,K} and apply three operations to get {(W s+1

i ,θs+1
i ), i = 1, . . . ,K}.

1. (Reweighting step) This step prepares the current cloud to target the next distribution. A particle θi
s is

reweighted by

W s+1
i ∝ ws+1

i =
πs+1(θs

i )
πs(θ

s
i )

, for i = 1, . . . ,K,
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where ∝ stands for "proportional to" and the ws+1
i ’s are unnormalized weights, useful to estimate the

normalizing constant as we shall see later. Because the weights W s+1
1 , . . . ,W s+1

K are actually importance

weights, the targeted distribution πs+1 is chosen so that the weights satisfy

ESS ≈ 1∑K
i=1(W s+1

i )2
≥ ρN,

where ρ ∈ (0,1). The selection of the next target reduces to picking a suitable temperature τs+1. This is

done via binary search and ρ is set to 1/2 following up on the recommendation of Jasra et al. [30].

2. (Resampling step) Particles θ̃s
1, . . . , θ̃

s
K are sampled from the particle clouds {(W s+1

i ,θs
i ), i = 1, . . . ,K}. A

simple multinomial resampling is used here, but note that alternative schemes discussed for instance in

the work of Gerber et al. [19] are also possible.

3. (Move step) Metropolis-Hasting within Gibbs moves are applied to the particles θ̃s
1, . . . , θ̃

s
K to yield the

new generation of particles θs+1
1 , . . . ,θs+1

K . The matrix H of the Markov Kernel K is given by Σ̂ · 2.38/
√
d,

where Σ̂ is the empirical variance-covariance matrix of the particles system {(W s+1
i ,θs

i ), i = 1, . . . ,K}. The

number of transitions k ∈N to be applied is set to ensure the diversification of the particle cloud. In

practice, the Markov kernel is applied once to each particle. The acceptance rate p̂a is estimated after

this pilot run and k is then given by

k = max
{
kmax, min

[
kmin,

log(1− c)
log(1− p̂a)

]}
,

where kmin and kmax denotes the minimum and maximum number of transitions, and c ∈ (0,1) is the

probability that each particle is moved at least once. Note that kmin, kmax and c are the user-defined

parameters of the smc algorithm. The new particles θs+1
1 , . . . ,θs+1

K are sampled from πs+1 and are equally

weighted with W s+1
i = 1/K for i = 1, . . . ,K .

The adaptative choice of the target distribution in step 1 and the calibration of H and k in step 3 are standard

smc algorithmic tricks used for instance in the paper of South et al. [45] and the smc sampler of the Python

package pymc of Salvatier et al. [41]. The move step is easy to paralellize to optimize the computing time. A

summary of the algorithm can be found in Appendix A, see Algorithm 1.

The unnormalized weights {ws
i , 1 ≤ i ≤ K , 1 ≤ s ≤ t} yield an approximation of the normalizing constant as

Z(x) = Zt =
t∏

s=1

Zs

Zs−1
≈

t∏
s=1

 1
K

K∑
i=1

wi
s

 .
The accuracy of the estimator depends on the population size (the higher the better) which is chosen by the

user according to a computing time budget. The bayes-splicing package implements the sequential Monte
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Carlo sampler to fit and compare the composite models introduced in Section 2.1. In addition to the posterior

probability, it is possible to compute two Bayesian information criteria. The Deviance Information Criterion

(DIC), introduced in the work of Spiegelhalter et al. [46] and the Widely applicable Information Criterion

(WAIC) of Watanabe [49]. For a comprehensive discussion about the information criteria used in Bayesian

statistics, I refer the reader to the work of Gelman et al. [17]. Although this work focuses on the posterior

model probability to compare the competing theories, note that the bayes-splicing includes python methods

to compute the DIC and WAIC.

4 Simulation study

The experiment involves generating claim data from a known composite model and fitting it using multiple

composite models. The pdf of the composite models in competition are continuous at the threshold, and

combine the Weibull or the Inverse-Weibull distribution for the body to the Inverse-Weibull, Lomax or

Log-Logistic distribution for the tail. This makes six models to choose from. Note that the choice of the data-

generating model and competing models is arbitrary. We limit ourselves to 6 models so as not to unreasonably

increase the calculation times and for the sake of readability of the graphs on which the results are presented.

The sample size of the artificial data ranges from 500 to 5,000. For each of the 1,000 simulation runs, the

posterior probability of each model is computed. A first objective is to assess the finite sample consistency

of the model selection procedure. Once the composite models have been calibrated, an estimation of the

quantiles of the first-line insurer surplus distribution, defined in Section 2.2, is produced and compared to the

true value. For the latter application, The average number of claims is λ = 250. The xol priority and limits

are set to be the 90% and 99% quantiles of the splicing distribution that generated the data. The quantile

estimates resulting from the best model (according to the posterior probabilities) and from the Bayesian

model averaging procedure are also compared to the true value. Two cases are considered. In Section 4.1, the

model is well-specified, meaning that the data generating model belongs to the set of concurrent models. In

Section 4.2, the model is misspecified, which means that the data generating model does not belongs to the set

of concurrent models.

4.1 When the model is well-specified

The losses are drawn from a Weibull(k = 1/2,β = 1) − Lomax(α = 2.5,σ = 1.5) continuous composite model

with a threshold γ = 1.5. The prior assumptions of the competing composite models are given in Appendix B,

see Table 4. The prior assumption over the threshold parameter is given by γ ∼ Gamma(1,1). The number

13



of particles is N = 8,000. The posterior model probabilities of the competing composite models computed

for each of the 1,000 simulation runs for samples of sizes 500,1000,2000, and 5000 are shown in Figure 1.

The posterior probabilities discriminate the composite models having the Inverse-Weibull distribution as bulk
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Figure 1: Posterior probabilities assigned to each composite model for sample of sizes 500,1000,2000, and

5000 drawn from a continuous Weibull−Lomax composite model.

distribution. The posterior probability of the Weibull-Lomax model converges toward one as the sample size

increases, just as expected. Figure 2 displays the boxplots of the 0.5%,0.01% and 0.05% quantiles of the first

line insurer surplus ΠD −D depending on the composite model used. The "Best" model corresponds, for each

simulation run, to the model associated to the highest model probability. The "BMA" model provides the

quantile estimate resulting from the weighted average of all the models where the weights are defined by the

posterior probabilities. The Weibull-Lomax model provides the most accurate estimation of the quantiles

followed closely by the "Best" and "BMA" models which is consistent with the posterior probabilities reported

on Figure 1. Note that the composite models with the Inverse-Weibull distribution as the body have been

removed because the estimate of the quantiles is too far from the true value to assess the accuracy of the other

models.

4.2 When the model is misspecified

The losses are drawn from a Exp(δ = 1/2) − Burr(α = 1.8,β = 2,σ = 3) continuous composite model with a

threshold γ = 2.5. The prior assumptions of the competing composite models are given in Table 4. The number

of particles is N = 8,000. The posterior model probabilities of the competing composite models computed
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Figure 2: Left quantiles of the profit and loss distribution of the first-line insurer depending on the composite

model used. The loss data consists of sample of sizes 500,1000,2000, and 5000 drawn from a continuous

Weibull−Lomax composite model. The dashed line represents the true value.

for each of the 1,000 simulation runs for samples of sizes 500,1000,2000, and 5000 are shown in Figure 3.

The highest posterior probabilities are reported for the composite models having the Weibull distribution as

body, and more specifically for the composite models having the Log-logistic and Lomax distributions as tail.

This tendency is reinforced when the sample size increases. This result was expected, since the exponential

distribution is a special case of the Weibull distribution on the one hand and the Lomax and Log-logistic

distributions are special cases of the Burr distribution on the other hand. Figure 4 displays the boxplots of the

0.5%,0.01% and 0.05% quantiles of the first line insurer surplus ΠD −D depending on the composite model
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Figure 3: Posterior probabilities assigned to each composite model for sample of sizes 500,1000,2000, and

5000 drawn from a continuous Exp−Burr composite model.

used. When the model is misspecified then the "Best" and "BMA" models provide the most accurate estimation

of the quantiles. Note that the BMA approach also seems to decrease the variance of the estimation. This

validates the model selection procedure proposed in this work since model misspecification tends to be the

rule in real applications.

5 Application to the Danish fire insurance data

The Danish fire insurance data are highly valued by actuarial researchers for comparing statistical methods

dealing with extreme values. The data was retrieved from the R package SMPracticals of the book by Davison

[13]. It contains 2,492 data points, some summary statistics are provided in Table 2. The aim of this study is to

find the most suitable composite model for these data among all the possible combinations of distribution

for the body and the tail, the different types of composite model including "continuous", "discontinuous" and

"simple", and the threshold selection method. The composite models are compared based on log marginal

likelihood and a quantile-based distance, which we now present. Denote by F(x,θ) the cdf of the composite

model and let Q(y,θ) = inf{x ∈R ; F(x,θ) ≥ y} be its generalized inverse function that we refer to as the quantile

function. The distance

W (F,x) =
1
n

n∑
i=1

∣∣∣∣Q (
i/n, θ̂

)
− xi:n

∣∣∣∣ , (17)
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Figure 4: Left quantiles of the profit and loss distribution of the first line insurer depending on the composite

model used. The loss data consists of sample of sizes 500,1000,2000, and 5000 drawn from a continuous

Exp−Burr composite model. The dashed line represents the true value.

aims at comparing the quantiles estimated via the composite model Q
(
i/n, θ̂

)
, where θ̂ denotes the mean

a posteriori, to the empirical quantiles xi:n for i = 1, . . . ,n. The notation W comes from the fact that (17)

corresponds to the empirical counterpart of a variation of the Wasserstein distance between the empirical

measure and the probability measure with density f (x,θ) with respect to the Lebesgue measure. The distance

(17) summarizes in a single number the information contained in a Q-Q plot. Information criteria based on

the likelihood function, such as log marginal likelihood, often tend to focus on the part of the distribution

that concentrates many data points. A distance based on quantiles, like (17), is more sensitive to extreme
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Claim sizes

count 2,492

mean 3.06

std 7.98

min 0.31

25% 1.16

50% 1.63

75% 2.65

max 263.25

Table 2: Descriptive statistics of the Danish fire insurance losses.

values and therefore puts more emphasis on a potential mismatch in the tail of the distribution. In Section 5.1,

the threshold parameter is treated like any of the other model parameters. In addition to choosing the most

suitable composite model, we want to highlight the impact of the selected composite model on the value of the

extreme value threshold within this free-threshold approach. Section 5.2 completes the results of Section 5.1

by considering the case where the value of the extreme value threshold is fixed before estimating the other

parameters of the composite model.

5.1 Simultaneous estimation of the extreme value threshold

In this section, the threshold parameter of the composite model is estimated together with the other parameters.

The prior assumptions over the threshold and mixing parameters (for the discontinuous composite models)

read as follows

γ ∼Uniform([min(x),max(x)]), and p ∼Uniform([0,1]).

The number of particles is N = 10,000. Figure 5 gives the boxplots of the log marginal likelihood and the

quantile distance depending on the type of composite model considered. The discontinuity at the threshold

improves the overall fit of the model to the data when examining the marginal likelihood values. The difference

in terms of matching the empirical quantiles of the data, however, is less obvious. Figure 6 shows the posterior

probabilities of the various composite models grouped by type. The discontinous and simple composite models

favor the Burr distribution for the tail combined to either the exponential, gamma, inverse-Gaussian or Weibull

distribution for the distribution body. The best continuous composite model is the Weibull-Log logistic one.

Let us inspect the extreme value threshold resulting from the simultaneous estimation of the composite model
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Figure 5: Log marginal likelihood and quantile distance of the fitted composite models depending on their

type.
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Figure 6: Posterior probabilities of the composite models depending on their type.

parameters shown in Figure 7. The majority of the "discontinuous" and "simple" composite models agree on

a threshold of 0.82 as if a discontinuity were indeed present in the data. For the “continuous” composite

models, the results are more contrasted even if the threshold takes on fairly low values, oscillating between

0.9 and 1. Let us take as an example the Weibull-Log logistic composite model. Figure 8 shows the posterior

distributions of the parameters in the "continuous" and "discontinuous" setting. The shape of the posterior
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Figure 7: Posterior mean of the threshold resulting from the simultaneous estimation of the composite model

parameters.

distribution of the threshold in the "discontinuous" case indicates a steep downward slope in the likelihood

function at the threshold revealing a strong evidence of a discontinuity in the data, see Figure 8a. The shape of

the posterior distribution of the γ parameter in the "continuous" case is much more standard, see Figure 8b.

Of the single loss models, the Burr distribution is the one that leads to the best fit to the data. If we define the

Burr distribution as the body distribution of the composite model, then the threshold takes on high values.

The algorithm wants to model the whole data using only the Burr model. When the composite model’s body

distribution is the exponential distribution, then it’s the other way around. The algorithm sets the threshold as

low as possible. The conclusion is that it is difficult to base the definition of the extreme value threshold on the
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Figure 8: Posterior plots of the composite model parameters.

simultaneous estimation of the parameters of a composite model. If the composite model is discontinuous, the

risk is to capture a discontinuity which could be a simple artefact of the empirical distribution of the data.

If the composite model is continuous then the value of the threshold strongly depends on the choice made

for the body and the tail of the composite model. Overall, many threshold values reported in Figure 4 are too

low because 95% to 99% of the claim amounts are considered extreme. In my humble opinion, one possibility

is to define a balanced composite model with a few parameters, for example, the exponential distribution as

the body and the Pareto distribution as the tail. The resulting threshold is 1.83, which is reasonable since

60% of claims are below this threshold. This recalls the procedure of detecting a break in the Q-Q plot of the

exponential (see Figure 9a) and Pareto distribution (see Figure 9b). The resulting fit seems fair, especially in

the tail, see Figure 9c.
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Figure 9: Q-Q plots of the Exp model, Pareto model, and the Exp-Pareto continuous composite model fitted to

the danish fire loss data using the posterior mean.

5.2 Separate estimation of the extreme value threshold

Many methods for selecting the extreme value threshold have been proposed in the statistical literature and

they lead to very different threshold values as shown in Table 3. The value reported in Table 3 were obtained

Threshold value Method Bibliography entry

2.46 Minimizing the AMSE of the Hill estimator Caeiro and Gomes [9]

14.39 A Bias-based procedure Drees and Kaufmann [16]

25.29 Eyeballing and Hill plot Danielsson et al. [12]

4.61 Eyeballing and Gerstengarbe plot Gerstengarbe and Werner [20]

12.06 Exponential goodness-of-fit test Guillou and Hall [25]

1.43 Double bootsrap Gomes et al. [23]

4.09 Single bootstrap Hall [26]

1.50 Minimizing the AMSE of the Hill estimator Hall and Welsh [27]

2.78 Minimizing the AMSE of a trimmed Hill estimator Bladt et al. [7]

Table 3: Threshold values depending on the extreme value technique used.

using the tea3 R package. The purpose of this work is not to discuss the merits of each of these methods but

rather to illustrate the ability of the bayes-splicing package to take a fixed threshold value before inferring

the rest of the parameters of the composite model. We therefore use an automatic threshold selection method

3tea package documentation
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presented in a recent work of Bladt et al. [7]. It consists in minimizing the asymptotic mean squared error of a

trimmed version of the Hill estimator of the tail index parameter of the Pareto distribution. The procedure

leads to a threshold of 2.78. Since the threshold selection method assumes that the tail is of Pareto type, only

the composite models having a Pareto or generalized Pareto tail are considered. The number of particles is

N = 10,000. The posterior model probabilities of the composite models are shown in Figure 10. The highest
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(c) Continuous

Figure 10: Posterior probabilities of the composite models depending on their type with the fixed threshold.

posterior probability is obtained by the composite Burr-Pareto model and this for all types of composite models.

This can be explained by the flexibility of the Burr distribution thanks to its three parameters. This result

justifies the use of a nonparametric assumption on the distribution of the body of the composite model when

the threshold is chosen before the estimation of the other parameters. This makes it possible in particular to

overcome the uncertainty surrounding the choice of the distribution of the body of the composite model. We

further compare the goodness-of-fit of the composite models with fixed threshold to that of the composite

models for which the threshold was set by the algorithm. Figure 11 shows the boxplot of the log marginal

likelihood and the quantile distance for the composite models having a Pareto or a generalized Pareto tail. The

examination of the marginal likelihood indicates that it is preferable to leave the threshold free while fixing

the threshold beforehand improves the distance to the empirical quantiles. This last remark does not seem to

hold when the composite model is continuous at the threshold. We conclude that for a "continuous" composite

model, performing simultaneous estimation is the way to go because the overall fit is better and the quantile

matching is as good as with a prefixed threshold. If the threshold is fixed beforehand, it is preferable to opt

for a "discontinuous" composite model because the loss of the degree of freedom associated with the mixing

parameter p seriously affects the fit to the data.
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Figure 11: Log marginal likelihood and quantile distance of the composite models according to their type, and

if the threshold was estimated before or at the same time as the other parameters.

6 Conclusions and perspectives

This paper presents an implementation of a smc sampler to fit and compare composite models within a

Bayesian framework. The python package can be installed from pip, see bayes-splicing and the notebooks to

reproduce the results can be freely downloaded from the following github repository SMCCompoMo. The

Bayesian approach, compared to the frequentist approach, takes into account the uncertainty around the

parameter estimates and enables to encapsulate expert knowledge in the prior distribution. smc samplers have

three advantages over the standard mcmc algorithm: (1) It avoids the fine tuning of some hyperparameters, (2)

it provides an appoximation of the normalizing constant as a byproduct, and (3) it is very easy to paralellize

to take advantage of the multi-core processors that equip modern computers. The simulation experiment

showed the capacity of the algorithm to identify the model that generated the data. The advantage of using the

posterior model probabilities to weight the estimates of the quantile of the insurer’s surplus returned by the

various models has been demonstrated, in particular in the case where the model generating the data does

not belong to the set of concurrent models. The analysis of the Danish fire insurance data highlighted the

advantages and disadvantages of taking a discontinuous or continuous composite model, and also of letting

the algorithm select a threshold or fix it beforehand.

There are many avenues for future research. The Monte Carlo sequential sampler could be improved by
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considering a more sophisticated particle perturbation scheme than the random walk one, similar to what is

proposed by South et al. [45]. It is also possible to combine the estimates of the different models using weights

based on cross-validation procedures to improve the predictive power of the Bayesian averaging procedure,

see the work of Yao et al. [50]. When the threshold is set before the other parameters, then a flexible model

for the body of the composite model and a discontinuity at the threshold can be optimal. Along these lines,

a nonparametric assumption could be made over the body distribution. Tancredi et al. [47] used a mixture

of uniform distributions, MacDonald et al. [35] used a kernel density estimator, Cabras and Castellanos [8]

used an orthogonal polynomial expansion, and Reynkens et al. [39] used a mixture of Erlang distributions.

The question is which of these methods best suits the Bayesian framework proposed here. In view of the

importance given to the tail of the loss distribution, an inference method that does not rely on the likelihood

function could be considered. Minimum distance estimators that minimize a measure of the deviation between

the empirical quantiles and those of the model could be a valid direction. The work of Bernton et al. [5] focuses

on parameter estimates that minimize the Wasserstein distance which reduces in our case (iid and univariate

data) to a distance between quantiles. Posterior distributions may be obtained by applying an Approximate

Bayesian Computation (ABC) algorithm. ABC combined to the Wasserstein distance have been considered in

the work of Bernton et al. [6] and applied to aggregated insurance data in the work of Goffard and Laub [22].
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A Summary of the Sequential Monte Carlo algorithm

Algorithm 1 smc sampler for π(θ|x)

1: Set ρ ∈ (0,1); kmin ∈N; kmax ∈N; c ∈ (0,1)

2: Initialize s← 0 ; π0(θ)← π(θ);

3: for i = 1→ K do

4: θ0
i ∼ π(θ) ; W 0

i ← 1/K

5: end for

6: while πs(θ) , π(θ|x) do

7: Search for πs+1 such that

1∑N
i=1(W s+1

i )2
≥ ρN, with W s+1

i ∝ ws+1
i = πs+1(θs

i )/πs(θ
s
i ), i = 1, . . . ,K

8: Compute Σ̂ = Cov
(
{(W s+1

i ,θs
i ), i = 1, . . . ,K}

)
9: for i = 1→ K do

10: Sample θ̃i ∼ {θ
(s)
1 , . . . ,θ

(s)
K } with probabilities W s+1

j , for 1 ≤ j ≤ K

11: end for

12: for i = 1→ K do

13: θ̃∗i ← KH (θ̃i , ·) where KH (θ̃i , ·) where H = 2.38√
d
· Σ̂

14: end for

15: Compute pa = N−1∑K
i=1 Iθ̃∗i =θ̃i

; k = max
{
kmax, min

[
kmin,

log(1−c)
log(1−pa)

]}
16: for i = 1→ K do

17: θs+1
i ← K

∗(k−1)
H (θ̃∗i , ·) where K

∗(k−1)
H (θ̃∗i , ·) corresponds to k − 1 Metropolis-Hasting-Gibbs moves

18: W s+1
i ← 1/K

19: end for

20: end while

21: Return (W t
1 ,θ

t
1), . . . , (W t

K ,θ
t
N )

B A priori assumptions

Table 4 provides an overview of the prior assumtions used to do the Bayesian fit of the composite models in

Sections 4 and 5. Note that the bayes-splicing allows the user to choose different hyper-parametrization

than what is specified in Table 4. Note also that beta and uniform distribution can be used as in addition to the
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Name Parameters prior

Exponential Exp(λ) λ > 0 λ ∼Gamma(1,1)

Gamma Gamma(r,m) r,m > 0 r,m ∼Gamma(1,1)

Weibull Weibull(k,β) k,β > 0 k,β ∼Gamma(1,1)

Lognormal Lognormal(µ,σ ) µ ∈R, σ > 0 µ ∼Normal(0,0.5) and σ ∼Gamma(1,1)

Inverse-Gaussian Inverse-Gaussian(µ,λ) µ,λ > 0 µ,λ ∼Gamma(1,1)

Inverse-Gamma Inverse-Gamma(r,m) r,m > 0 r,m ∼Gamma(1,1)

Inverse-Weibull Inverse-Weibull(k,β) k,β > 0 k,β ∼Gamma(1,1)

Lomax Lomax(α,σ ) α,σ > 0 α,σ ∼Gamma(1,1)

Log-Logistic Log-Logistic(β,σ ) β,σ > 0 β,σ ∼Gamma(1,1)

Burr Burr(α,β,σ ) α,β,σ > 0 α,β,σ ∼Gamma(1,1)

Pareto Pareto(α,γ) α,γ > 0 α ∼Gamma(1,1)

Generalized Pareto GPD(ξ,σ ,γ) ξ,σ ,γ > 0 ξ,σ ∼Gamma(1,1)

Table 4: Prior assumptions over the parameters of distribution for the bulk and tail of the composite models.

gamma and normal distributions. The γ parameter in the Pareto and Generalized Pareto cases corresponds to a

threshold. This parameter should be set to the minimum of the data points if the models are considered alone.

The prior specification of the mixing parameter p and the threshold parameter γ of the composite models are

given in the main text.
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