EXAMEN FINAL

Théorie de la mesure et intégration—2019-2020 Pierre-O Goffard

Instructions: On éteint et on range son téléphone.

- La calculatrice et les appareils éléctroniques ne sont pas autorisés.
- Vous devez justifier vos réponses de manière claire et concise.
- Vous devez écrire de la manière la plus lisible possible. Souligner ou encadrer votre réponse finale.

Question:	1	2	3	4	Total
Points:	4	7	3	6	20
Score:					

- 1. Question de cours. Soit Ω un ensemble.
 - (a) (1 point) Montrer que l'intersection de deux tribus \mathcal{A} et \mathcal{B} est une tribu.
 - (b) (1 point) Soit $\mu: \mathcal{A} \mapsto \overline{\mathbb{R}}_+$, une mesure positive définie sur l'espace mesurable (Ω, \mathcal{A}) . Montrer que

$$\mu(A_1 \cup A_2) \geqslant \max(\mu(A_1), \mu(A_2))$$
, pour tout $A_1, A_2 \in \mathcal{A}$.

Solution: Comme $A_1, A_2 \subset A_1 \cup A_2$ alors $\mu(A_1) \leq \mu(A_1 \cup A_2)$ et $\mu(A_2) \leq \mu(A_1 \cup A_2)$ ce qui implique que $\mu(A_1 \cup A_2) \geqslant \max(\mu(A_1), \mu(A_2))$.

(c) (2 points) Soit $(f_n)_{n\in\mathbb{N}^*}$ une suite de fonction mesurables, positive de $(\Omega, \mathcal{A}, \mu)$ vers $(\mathbb{R}_+, \mathcal{B}_{\mathbb{R}_+})$. Montrer la validité de l'égalité suivante

$$\int \sum_{n \in \mathbb{N}^*} f_n d\mu = \sum_{n \in \mathbb{N}^*} \int f_n d\mu.$$

Solution: La suite $(\sum_{k=1}^n f_k)_{n \in \mathbb{N}^*}$ est une suite de fonctions positives et croissante dont la limite est une fonction positive $\sum_{n \in \mathbb{N}^*} f_n$. Nous avons donc par Beppo-Lévi

$$\sum_{n\in\mathbb{N}^+}\int f_n\mathrm{d}\mu=\lim_{n\to\infty}\sum_{k=1}^n\int f_k\mathrm{d}\mu=\lim_{n\to\infty}\int\sum_{k=1}^n f_k\mathrm{d}\mu\stackrel{BL}{=}\int\sum_{n\in\mathbb{N}^*}f_n\mathrm{d}\mu$$

2. Soit Ω un ensemble fini de cardinal $n \geq 1$, muni de la tribu formée de ses parties $\mathcal{P}(\Omega)$. On définit la mesure de probabilité μ par

$$\mu(\{x\}) = \frac{1}{n}, \ x \in \Omega.$$

Soit P une partition (ensemble de parties, disjointes, non vide, de réunion Ω) de Ω , l'entropie de la partition P est donnée par

$$\mathcal{H}(P) = -\sum_{A \in P} \mu(A) \ln[\mu(A)].$$

(a) (1 point) Existe-t-il une partition d'entropie nulle? Est-elle unique?

Solution: L'entropie est une somme de quantité positive $\mu(A) \times (-\ln(\mu(A)))$, sa nullité entraine la nullité de chacun de ses termes soit

$$\mu(A) \times (-\ln(\mu(A))) = 0$$
, pour tout $A \in P$.

Comme A est non vide alors $\mu(A) > 0$ puis $\ln(\mu(A)) = 0$ et enfin $\mu(A) = 1$. Cela implique que la seule partition d'entropie nulle est $P = \{\Omega\}$.

(b) (1 point) Soit $A \in \mathcal{P}(\Omega)$ de cardinal k tel que 0 < k < n. Donner l'entropie de la partition $P = \{A, A^c\}$ en fonction de k et n.

Solution: On a

$$\mathcal{H}(P) = -\mu(A)\ln\mu(A) - -\mu(A^c)\ln\mu(A^c) = -\frac{k}{n}\ln\left(\frac{k}{n}\right) - \frac{n-k}{n}\ln\left(\frac{n-k}{n}\right).$$

(c) (2 points) Quelle est la partition d'entropie maximale? Justifier votre réponse et donner la valeur de l'entropie maximale. On notera \mathcal{H}_{max} l'entropie maximale dans la suite.

Solution: La partition d'entropie maximale est la partition composée de singletons. En effet, l'entropie d'une partie contenant deux éléments est inférieur a la somme des entropies des deux singletons. Pour $A = \{x, y\}$, on a

$$-\mu(A)\ln(A) - (-\mu(\{x\})\ln(\{x\}) - \mu(\{y\})\ln(\{y\})) = -\frac{2}{n}\left(\ln\left(\frac{2}{n}\right) - \ln\left(\frac{1}{n}\right)\right) < 0.$$

L'entropie maximum est donnée par

$$\mathcal{H}_{\max} = \ln(n)$$

(d) (1 point) Soit $X : \Omega \mapsto \{1, ..., n\}$, une application bijective. Justifier la mesurabilité de X comme application de $(\Omega, \mathcal{P}(\Omega))$ vers $(\{1, ..., n\}, \mathcal{P}(\{1, ..., n\}))$.

Solution: Pour tout $k \in \{1, ..., n\}$ il existe un unique $x \in \Omega$ tel que

$$X^{-1}(\{k\}) = \{x\} \in \mathcal{P}(\Omega)$$

comme la tribu des parties de $\{1,\ldots,n\}$ est engendrée par les singletons alors X est mesurable.

(e) (1 point) X est une variable aléatoire au départ de l'espace probabilisé $(\Omega, \mathcal{P}(\Omega), \mu)$, donner sa loi de probabilité. Cette loi de probabilité peut-elle s'écrire comme une mesure à densité, si oui par rapport à quelle mesure?

Solution: La loi de probabilité de X est définie comme la mesure image de μ par X, on note

$$\mathbb{P}_X(k) = \mu(X^{-1}(\{k\})) = \frac{1}{n}.$$

La loi de probabilité de X est absolument continue par rapport à la mesure de comptage sur $\{1,\ldots,n\}$ définie par

$$\nu(A) = \sum_{k=1}^{n} \delta_k(A), \text{ pour tout } A \in \mathcal{P}(\{1, \dots, n\}),$$

sa densité est donnée par

$$p_X(k) = \frac{\mathrm{d}\mathbb{P}_X}{\mathrm{d}\nu}(k) = \frac{1}{n} \text{ pour tout } k = 1, \dots, n.$$

(f) (1 point) Ecrire l'entropie maximale \mathcal{H}_{max} comme l'espérance d'une fonction de X.

Solution: L'entropie maximale coincide avec $\mathbb{E}(-\ln(p_X(X)))$

3. (3 points) A l'aide du théorème de Beppo Levi, calculer $\lim \int_0^n \left(1 - \frac{x}{n}\right)^n e^{\alpha x} dx$, pour $\alpha < 1$. Indication: Étudier $g_n \colon x \mapsto (n+1) \ln \left(1 - \frac{x}{n+1}\right) - n \ln \left(1 - \frac{x}{n}\right)$.

Solution: On remarque que pour tout $x \in [0, n]$, $\frac{f_{n+1}}{f_n}(x) = \exp(g_n(x))$. On étudie donc g_n .

$$g'_n(x) = -\frac{1}{1 - \frac{x}{n+1}} + \frac{1}{1 - \frac{x}{n}}$$

$$= \frac{n(n+1-x) - (n+1)(n-x)}{(n-x)(n+1-x)}$$

$$= \frac{x}{(n-x)(n+1-x)} \ge 0.$$

Donc g_n est croissante et $g_n \ge 0$ et la suite $(f_n)_{n \in \mathbb{N}}$ est croissante.

De plus, on sait que $f_n(x) \to \exp(-x) \exp(\alpha x)$, donc

$$\int_0^\infty f_n(x) dx \to \int_0^\infty e^{(1-\alpha)x} dx = \frac{1}{1-\alpha}.$$

- 4. Evaluation de l'intégrale de Gauss et de la fonction gamma par les intégrales de Wallis.
 - (a) (1 point) L'intégrale de Wallis est définie par

$$W_n = \int_0^{\pi/2} \cos^n(\theta) d\theta, \ n \geqslant 0$$

Montrer que $W_n = \frac{n-1}{n}W_{n-2}$, pour $n \ge 2$. En déduire que la suite $(nW_nW_{n-1})_{n\ge 1}$ est constante, on explicitera cette constante.

Solution:

$$W_n = \int_0^{\pi/2} \cos(\theta) \cos^{n-1}(\theta) d\theta$$

$$\stackrel{IPP}{=} (n-1) \int_0^{\pi/2} \sin^2(\theta) \cos^{n-2}(\theta) d\theta$$

$$= (n-1)[W_{n-2} - W_n],$$

puis $W_n=\frac{n-1}{n}W_{n-2}$ après ré-arrangement. On note ensuite que $nW_nW_{n-1}=(n-1)W_{n-1}W_{n-2}$. la suite (nW_nW_{n-1}) égale a $W_1W_0=\pi/2$.

(b) (1 point) Montrer que

$$W_n W_{n+1} \leqslant W_n^2 \leqslant W_n W_{n-1}.$$

En déduire l'équivalent en l'infini $W_n \sim \sqrt{\frac{\pi}{2n}}$.

Solution: On a, pour $\theta \in [0, \pi/2]$,

$$\cos^{n+1}(\theta) \leqslant \cos^{n}(\theta) \leqslant \cos^{n-1}(\theta)$$

$$W_{n+1} \leqslant W_{n} \leqslant W_{n-1}$$

$$W_{n+1}W_{n} \leqslant W_{n}^{2} \leqslant W_{n}W_{n-1}$$

On écrit ensuite

$$\frac{n}{n+1}(n+1)W_{n+1}W_n\leqslant nW_n^2\leqslant nW_nW_{n-1}.$$

Ce qui implique que $W_n \sim \sqrt{\frac{\pi}{2n}}$.

(c) (1 point) On pose

$$J_n = \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n \mathrm{d}t$$

Montrer que

$$\lim_{n \to +\infty} J_n = \int_0^{+\infty} e^{-t^2} dt.$$

Solution: Soit $f_n(t) = \left(1 - \frac{t^2}{n}\right)^n \mathbb{I}_{[0,\sqrt{n}]}$ qui converge $t \mapsto e^{-t^2}$. De plus $|f_n(t)| < e^{-t^2}$, on applique le théorème de convergence dominé pour obtenir

$$\lim_{n \to +\infty} J_n = \int_0^{+\infty} e^{-t^2} \mathrm{d}t.$$

(d) (1 point) Exprimer J_n en fonction d'une intégrale de Wallis. En déduire la valeur de l'intégrale de Gauss,

$$\int_0^{+\infty} e^{-t^2/2} dt = \frac{1}{2} \sqrt{2\pi} = \sqrt{\pi/2}$$

Solution: On note d'abord que $\int_0^{+\infty} e^{-t^2/2} dt = \sqrt{2} \int_0^{+\infty} e^{-t^2} dt$, puis

$$J_n = \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n dt$$
$$= \sqrt{n} \int_0^1 \left(1 - u^2\right)^n du$$
$$= \sqrt{n} \int_0^{\pi/2} \cos^{2n+1}(\theta) d\theta$$
$$\to \sqrt{\pi}/2$$

On en déduit que

$$\int_0^{+\infty} e^{-t^2/2} dt = \sqrt{\pi/2}.$$

(e) (1 point) Connaissant la valeur de l'intégrale de Gauss, montrer que

$$\Gamma(1/2) = \sqrt{\pi},$$

où la fonction gamma est définie par

$$\Gamma(z) = \int_0^{+\infty} e^{-x} x^{z-1} \mathrm{d}x.$$

Solution:

$$\Gamma(1/2) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt$$
$$= 2 \int_0^{+\infty} e^{-u^2} du$$
$$= \sqrt{\pi}.$$

(f) (1 point) Connaissant la valeur de l'intégrale de Gauss, évaluer à l'aide d'un changement de variable l'intégrale

$$K = \int_{\mathbb{R}^2} e^{-(x-y)^2} e^{-(x+y)^2} d\lambda(x,y).$$

Solution: On effectue le changement de variable suivant

$$\begin{cases} u = x - y \\ v = x + y \end{cases} \Rightarrow \begin{cases} x = (u - v)/2 \\ v = (u + v)/2 \end{cases}$$

On définit le C^1- difféomorphisme de \mathbb{R}^2 vers \mathbb{R}^2

$$\phi: (u,v) \mapsto \left(\frac{u-v}{2}, \frac{u+v}{2}\right)$$

de Jacobien

$$\det\left(\frac{\mathrm{d}\Phi}{\mathrm{d}(u,v)}\right) = \left|\begin{array}{cc} 1/2 & -1/2\\ 1/2 & 1/2 \end{array}\right| = 1/2.$$

On applique la formule de changement de variable pour obtenir

$$K = \int_{\mathbb{R}^2} e^{-u^2} e^{-v^2} \frac{1}{2} d\lambda(u, v)$$
$$= \int_{\mathbb{R}} e^{-u^2} d\lambda(u) \int_{\mathbb{R}} e^{-v^2} d\lambda(v)$$
$$= \frac{\pi}{2}$$

FONCTIONS TRIGONOMÉTRIQUES

Fonction	Ensemble de définition	Dérivée	
$\sin x$	\mathbb{R}	$\cos x$	
$\cos x$	\mathbb{R}	$-\sin x$	
$\tan x$	$\bigcup_{n\in\mathbb{Z}}]n\pi - \pi/2, n\pi + \pi/2[$	$1 + \tan^2 x$	
$\arccos x$	[-1, 1]	$-\frac{1}{\sqrt{1-x^2}}$	
$\arcsin x$	[-1,1]	$\frac{1}{\sqrt{1-x^2}}$	
$\arctan x$	\mathbb{R}	$\frac{1}{1+x^2}$	