## EXAMEN FINAL

## Modèles Aléatoires Discrets- 2019-2020 Pierre-O Goffard

Instructions: On éteint et on range son téléphone.

- La calculatrice et les appareils éléctroniques ne sont pas autorisés.
- Vous devez justifier vos réponses de manière claire et concise.
- Vous devez écrire de la manière la plus lisible possible. Souligner ou encadrer votre réponse finale.

| Question: | 1 | 2 | 3 | 4 | Total |
|-----------|---|---|---|---|-------|
| Points:   | 3 | 7 | 5 | 5 | 20    |
| Score:    |   |   |   |   |       |

- 1. Questions de cours. Processus de Poisson.
  - (a) (1 point) Soit  $X \sim \text{Exp}(\lambda)$ , montrer que

$$\mathbb{P}(X > t + s | X > t) = \mathbb{P}(X > s), \ s, t > 0.$$

- (b) (1 point) Rappeler la définition d'un processus de Poisson  $(N_t)_{t\geq 0}$
- (c) (1 point) Soit  $(N_t)_{t\geqslant 0}$  un processus de Poisson, montrer que

$$\mathbb{P}(N_t = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \ k \geqslant 0.$$

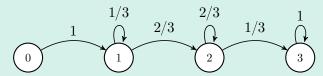
**Solution:** Voir le cours.

- 2. On suppose qu'une playlist (pour aller courir) contient 3 chansons différentes. On définit le processus  $(X_n)_{n\in\mathbb{N}}$  égale au nombre de chansons différentes écoutées jusqu'à l'instant  $n\in\mathbb{N}$ . On suppose que  $X_0=0$ .
  - (a) (1 point) Le processus  $(X_n)_{n\in\mathbb{N}}$  définit une chaine de Markov homogène. Donner son espace d'état, sa loi initiale, sa matrice des transitions et son graphe des transitions.

**Solution:**  $E = \{0, 1, 2, 3\}, \mu = (1, 0, 0, 0),$  La matrice des transitions est données par

$$Q = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 1/3 & 2/3 & 0 \\ 0 & 0 & 2/3 & 1/3 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

et le graph des transition



(b) (1 point)  $(X_n)_{n\in\mathbb{N}}$  est elle irréductible? Justifier.

Solution: L'espace d'état comprend 4 classes de communications dont

- $\{0\}$ ,  $\{1\}$ , et  $\{2\}$  sont des classes ouvertes
- {3} est une classe fermée.

La chaine n'est donc pas irréductible.

(c) (2 points) Discuter l'existence et l'unicité d'une loi stationnaire.

**Solution:** L'espace d'état est fini, il existe au moins une loi stationnaire. Celle ci est unique car on n'a qu'une seule classe fermée, la loi stationnaire est donnée par  $\pi=(0,0,0,1)$ 

(d) (1 point) On note  $\tau_3 = \inf\{n \ge 0 ; X_n = 3\}$ .  $\tau_3$  est-il un temps d'arrêt? Justifier.

Solution: On peut écrire

$$\{\tau_3 = n\} = \bigcap_{k=0}^{n-1} \{X_k \neq 3\} \cap \{X_n = 3\} \in \mathcal{F}_n,$$

avec  $\mathcal{F}_n = \sigma(X_0, \dots, X_n)$ .

(e) (2 points) En utilisant une analyse à un pas, donner  $\mathbb{E}_0(\tau_3) := \mathbb{E}(\tau_3 | X_0 = 0)$ .

Solution: On résout le système suivant

$$\mathbb{E}_0(\tau_3) = 1 + \mathbb{E}_1(\tau_3) \tag{1}$$

$$\mathbb{E}_1(\tau_3) = 1 + \mathbb{E}_1(\tau_3)/3 + 2\mathbb{E}_2(\tau_3)/3 \tag{2}$$

$$\mathbb{E}_2(\tau_3) = 1 + 2\mathbb{E}_2(\tau_3)/3 \tag{3}$$

On obtient  $\mathbb{E}_2(\tau_3) = 3$ ,  $\mathbb{E}_1(\tau_3) = 9/2$  et  $\mathbb{E}_0(\tau_3) = 11/2$ .

3. La vie de Pierre-O.

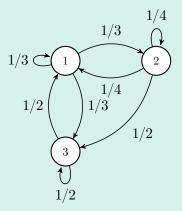
Nous allons géolocaliser Pierre-O heure par heure à l'aide d'une chaine de Markov homogène  $(X_n)_{n\geq 0}$ . Pierre-O peut se trouver dans 3 positions

- 1. Maison
- 2. ISFA
- 3. Bar

On suppose qu'initialement il peut se trouver dans un de ces trois endroits de manière equiprobable. Ensuite ses déplacements suivent la dynamique suivante

- lorsqu'il est à la maison il peut rester à la maison, aller à l'ISFA ou aller ou bar de manière equiprobable
- $\bullet$ lorsqu'il est à l'ISFA il va au bar dans 50% des cas, va à la maison dans 25% des cas, reste à l'ISFA dans 25% des cas
- lorsqu'il est au bar soit il reste au bar, soit il rentre à la maison de manière équiprobable.
- (a) (1 point) Donner l'espace d'état, la loi initiale, le graph des transitions et la matrice des transitions de  $(X_n)_{n\in\mathbb{N}}$ .

**Solution:** L'espace d'état est donné par  $E = \{1, 2, 3\}$ , la loi initiale est  $\mu = (1/3, 1/3, 1/3)$ . Le graph des transitions est le suivant



La matrice des transition est donnée par

$$Q = \left(\begin{array}{ccc} 1/3 & 1/3 & 1/3 \\ 1/4 & 1/4 & 1/2 \\ 1/2 & 0 & 1/2 \end{array}\right)$$

(b) (1 point) La chaine est-elle irréductible?

Solution: Oui, il n'y a qu'une seule classe de communication

(c) (1 point) Donner la période de chaque état

**Solution:** Tous les états sont dans la même classe de communication et ont donc même période, celle ci est égale à 1 car par exemple

$$d(1) = \operatorname{pgcd}\{1, 2, \ldots\} = 1$$

(d) (2 points) Après avoir justifié son existence et son unicité, donner la loi stationnaire de  $(X_n)_{n\in\mathbb{N}}$ .

Solution: L'espace d'état est de dimension fini, la loi stationnaire existe. Comme la chaine est irréductible alors la loi stationaire est unique et solution de

$$\begin{cases} \pi.Q = \pi \\ \pi.\mathbf{1}_3 = 1 \end{cases}$$

On trouve  $\pi = (9/23, 4/23, 10/23)$ 

4. L'objectif est de modéliser le temps d'attente à un guichet d'un guichet ouvert 24 heures sur 24. Les clients arrivent au guichet suivant un processus de Poisson  $(N_t)_{t\geqslant 0}$  d'intensité  $\lambda$ , l'unité de temps est l'heure. Le temps de service pour chaque client est une variable aléatoire X, positive, continue (à densité par rapport à la mesure de Lebesgue). Le temps d'occupation effectif du guichet est donné par un processus de Poisson composé défini par

$$S_t = \sum_{i=1}^{N_t} X_i, \ t \geqslant 0.$$

où  $(X_i)_{i\geqslant 1}$  est une suite i.i.d. de variables aléatoires distribuées comme X, indépendantes de  $(N_t)_{t\geqslant 0}$ . Le temps d'attente d'un client arrivant à l'instant t est un processus donné par

$$R_t = (S_t - t)_+, \ t \geqslant 0$$

où  $(x)_+ = \max(x,0), \ x \in \mathbb{R}$  désigne la fonction partie positive.

(a) (1 point) Lors de la première journée qui démarre à 0:00 heure, quelle est la probabilité d'avoir entre 2 et 4 clients entre 8:00 et 11:00. Donner le résultat en fonction de  $\lambda$ .

Solution: On calcule

$$\mathbb{P}(N_1 1 - N_8 \in \{2, 3, 4\}) = \mathbb{P}(N_3 = 2) + \mathbb{P}(N_3 = 3) + \mathbb{P}(N_3 = 4) 
= \frac{e^{-3\lambda} (3\lambda)^2}{2!} + \frac{e^{-3\lambda} (3\lambda)^3}{3!} + \frac{e^{-3\lambda} (3\lambda)^4}{4!}$$

(b) (2 points) Le temps de traitement de la demande d'un client suit une loi de Weibull  $X \sim \text{Weibull}(\alpha, \beta)$  de densité (par rapport à la mesure de Lebesgue) donnée par

$$f_X(x) = \left(\frac{\alpha}{\beta}\right) \left(\frac{x}{\beta}\right)^{\alpha-1} \exp\left(-\left(\frac{x}{\beta}\right)^{\alpha}\right), \ x > 0, \ \alpha, \beta > 0.$$

Calculer  $\mathbb{E}(X^k)$  pour  $k \ge 1$ . Donner le résultat en fonction de  $\alpha$ ,  $\beta$  et de la fonction gamma définie par

$$\Gamma(z) = \int_0^{+\infty} x^{z-1} e^{-x} dx, \text{ avec } z > 0.$$

Solution: On a

$$\mathbb{E}(X^k) = \int_0^{+\infty} x^k \left(\frac{\alpha}{\beta}\right) \left(\frac{x}{\beta}\right)^{\alpha - 1} \exp\left(-\left(\frac{x}{\beta}\right)^{\alpha}\right) dx$$
$$= \int_0^{+\infty} \beta^k y^{k/\alpha} e^{-y} dy$$
$$= \beta^k \Gamma(1 + k/\alpha)$$

(c) (1 point) Donner la moyenne et la variance de  $S_t$  pour un instant t > 0 en fonction de  $\alpha$ ,  $\beta$  et  $\lambda$ . Si vous n'êtes pas parvenu à résoudre la question précédente, vous pouvez noter  $\mu = \mathbb{E}(X)$  et  $\sigma^2 = \text{Var}(X)$ .

Solution: On a

$$\mathbb{E}(S_t) = \mathbb{E}(N)\mathbb{E}(X) = \lambda t \beta \Gamma(1 + 1/\alpha)$$

et

$$Var(S_t) = t\lambda \beta^2 \Gamma(1 + 2/\alpha)$$

(d) (1 point) On approche la distribution de  $(S_t)_{t\geqslant 0}$  (approximation grossière) par une loi exponentielle de paramètre  $1/\mathbb{E}(S_t)$  (L'atome de probabilité en 0 de  $S_t$  peut en particulier être négligé pour  $\lambda$  grand). En utilisant cette approximation, donner l'expression du temps d'attente moyen  $\mathbb{E}(R_t)$  à l'instant  $t\geqslant 0$  en fonction de  $\lambda,t,\alpha$ , et  $\beta$  (à défaut  $\mu$  si vous n'êtes pas parvenu à répondre à la question b).

Solution: On a

$$\mathbb{E}\left[(S_t - t)_+\right] = \mathbb{E}\left[(S_t - t)\mathbb{I}_{S_t > t}\right]$$

$$= \mathbb{E}\left(S_t\mathbb{I}_{S_t > t}\right) - t\mathbb{P}\left(S_t > t\right)$$

$$= \lambda t\beta\Gamma(1 + 1/\alpha)\exp\left(-1/\lambda\beta\Gamma(1 + 1/\alpha)\right)$$

## FORMULAIRE

| Nom         | abbrev.                       | Loi                                                                                       | $\mathbb{E}(X)$     | $\operatorname{Var}(X)$ | FGM                                                   |
|-------------|-------------------------------|-------------------------------------------------------------------------------------------|---------------------|-------------------------|-------------------------------------------------------|
| Binomial    | Bin(n,p)                      | $\binom{n}{k} p^k (1-p)^{n-k}$                                                            | np                  | np(1-p)                 | $[(1-p)+pe^t]^n$                                      |
| Poisson     | $\mathrm{Pois}(\lambda)$      | $e^{-\lambda} rac{\lambda^k}{k!}$                                                        | λ                   | λ                       | $\exp(\lambda(e^t - 1))$                              |
| Geometric   | $\operatorname{Geom}(p)$      | $(1-p)^{k-1}p$                                                                            | $\frac{1}{p}$       | $\frac{1-p}{p^2}$       | $\frac{pe^t}{1-(1-p)e^t} \text{ pour } t < -\ln(1-p)$ |
| Uniform     | $\mathrm{Unif}(a,b)$          | $\begin{cases} \frac{1}{b-a} & a \leqslant t \leqslant b \\ 0 & \text{sinon} \end{cases}$ | $\frac{a+b}{2}$     | $\frac{(b-a)^2}{12}$    | $\frac{e^{tb}-e^{ta}}{t(b-a)}$                        |
| Exponential | $\operatorname{Exp}(\lambda)$ | $\begin{cases} \lambda e^{-\lambda t} & t \geqslant 0\\ 0 & t < 0 \end{cases}$            | $\frac{1}{\lambda}$ | $\frac{1}{\lambda^2}$   | $\frac{\lambda}{\lambda - t}$ pour $t < \lambda$      |
| Normal      | $N(\mu, \sigma^2)$            | $\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)\exp\left(\frac{-(t-\mu)^2}{2\sigma^2}\right)$ | $\mu$               | $\sigma^2$              | $e^{\mu t}e^{\sigma^2t^2/2}$                          |