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Chapter 1

Introduction

A blockchain is a distributed ledger made of a sequence of blocks maintained by achieving

consensus among a number of nodes in a Peer-to-Peer network. The blockchain technology has

attracted a lot of interest after the advent of the bitcoin cryptocurrency in 2008, see Nakamoto

[2008]. Since then, the blockchain concept has been used to develop decentralized systems to

store and maintain the integrity of time-stamped transaction data across peer-to-peer networks.

Besides the creation of a digital currency, blockchain applications include the sharing of IT

resources, the registration of authentication certificate or the implementation of smart contracts.

A blockchain is

• Decentralized as it is maintained by a network. Nodes can be light or full nodes. Light

nodes are blockchain users that broadcast transactions, full nodes are in charge of verifying

and recording the transactions, see Figure 1.1.

Figure 1.1: A network made of full nodes (blue) and light nodes (white)

– A local copy is stored by each full node which grants security

– The governance is not handled by a central authority

• Public or private. In public blockchain anyone can access the data, in private blockchain

reading access is restricted.

• permissionned or permissionless. In permissionless blockchain, anyone can join the

network as a full node.
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• Immutable. Altering the information written in the blockchain is made difficult if not

impossible.

• Incentive compatible. The process of reaching consensus is costly to the full nodes who

must be compensated for their hard work.

The consensus protocols, at the core of the blockchain technologies, are the focus of these lecture

notes. The goal is to evaluate consensus protocol according to three dimensions

1. Efficiency: The amount of data being processed per time unit

2. Decentralization: The fairness of the distribution of the decision power among the nodes

3. Security: The likelihood of a successful attack on the blockchain

Because consensus protocols involve random components, stochastic modelling is required to as-

sess a blockchain system within the Efficiency/Decentralization/Security trilemma in Figure 1.2.

As it is hard to improve one dimension without negatively impacting the other two, trade-offs

Efficiency Decentralization

Security

Figure 1.2: The blockchain trilemma

must be made. We will see how to use classical models of applied probability, including urn,

epidemic, graph, queue and risk models, to provide numerically tractable indicators to quantify

the efficiency, decentralization and security of blockchain systems. These indicators will then

allow us to carry out sensitivity analysis with respect to the model parameters to optimize and

improve blockchain implementations.

The main application of blockchain systems today is undoubtedly cryptocurrencies, the most

well known of which being the bitcoin introduced by Nakamoto [2008]. Public and permis-

sionless blockchain, like the bitcoin one, must be associated to a cryptocurrency. Indeed, to

add a block to the bitcoin blockchains the full nodes compete to solve a cryptrographic puzzle

using brute force search algorithm. The first node (referred to as a miner) who finds a solution,

appends the next block and collects a reward expressed in cryptocurrency. Assuming this reward

is worth something, it offsets the operational cost which is essentially the electricity consumed

to run the computers 24/7. A cryptocurrency must be equipped with following features

1. No central authority (Decentralized network)
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2. Ledger to record all the transactions and coin ownership (the blockchain)

3. A coin generation process (block finding reward)

↪→ It creates an incentive compatible system to the full nodes

4. Ownership can be proved cryptographically, a wallet is secured with a public/private key

system

5. Transactions can be issued by an entity proving ownership of the cryptographic unit

through the private key

6. The system cannot process more than one transaction associated to the same cryptographic

unit. It must be robust to double spending attack in which a fraudster is issuing two

conflicting transactions to recover the funds she already spent

This charcaterization is given by Lansky [2018]. Cryptocurrencies draw their fundamental value

from the fact that they

• provide transaction anonymity

• provide a reliable currency in certain regions of the world

• permit money transfer worldwide at low fare

• do not require a thrusted third party

An important implication of this architecture is disintermediation, it creates an environment

where multiple parties can interact directly and transparently. Decentralized finance (DeFi)

offers a new financial architecture that is non-custodial, permissionless, openly auditable,

pseudo-anonymous and with potential new capital efficiencies. It extends the promise of the

original bitcoin whitepaper Nakamoto [2008] of non-custodial transaction to more complex

financial operations, see the SoK of Werner et al. [2021].

Blockchain is a research topic of interest to many communities. Computing science distributed

ledger technologies (synonymous with blockchains) rely on distributed algorithms and enable

cooperation within a peer-to-peer network. Linking blocks and checking the authenticity of data

uses cryptographic functions which is another field of computer science. The establishment

of an incentive system within a network of individuals adopting a strategic behavior naturally

leads to problems of game theory similar to those solved by economists. The discussion on the

nature of new financial assets such as crypto-currencies, utility tokens and non-fungible tokens,

is also at the center of the concerns of researchers in finance and monetary economics.

We focus here on the use of mathematics to optimize blockchain systems which makes our

problems very close to those encountered in operations research. These notes are organized as
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follows. Chapter 2 presents the various consensus algorithms. Chapter 3 compares traditional

and decentralized finance and provide an prominent example of DeFi application with the

decentralized Exchange platforms using automated market makers. Chapter 4 focuses on the

security aspects. In Chapter 5, we take a look at decentralization. We close on efficiency with

Chapter 6.

6



Chapter 2

Consensus protocol

Transactions flow through the network of full nodes. After reviewing them, the full nodes must

agree on the transaction that will be recorded in the next block. To do so, an algorithm must be

designed so that consensus is reached. A consensus protocol must be based on one of the scarce

resources available to the network peers which include

• bandwidth

• computational power

• storage

The first solution that comes to mind for reaching consensus is a majority vote based on a

message exchange system. This solution has been proposed by Lamport et al. [1982] within the

famous "Byzantine general problem". A voting system inside a large network involves a colossal

number of messages exchanged leading to the consumption of all the bandwidth, the failure

of some nodes by denial of service and delays in the synchronization of the network. Practical

solution like the celebrated Practical Byzantine Fault Tolerance (PBFT) presented in Castro and

Liskov [1999] have been implemented in some blockchain systems. Despite these advances, a

change in methods was needed to accommodate a network that could grow indefinitely.

Nakamoto [2008] solved this scaling problem by proposing a system based on the election of a

leader. The Proof-of-Work (PoW) protocol appoints a leader based on its computing resources.

Each node competes to solve a puzzle with a brute force search algorithm. The first node who

is able to propose a solution append the next block. The search for a solution, referred to

as mining, is associated with an operational cost borne by the nodes which is compensated

by a reward expressed in the native blockchain cryptocurrency. The surge in cryptocurrency

prices has led to a rush in block mining, leading to a major spike in the electricity consumption

and electronic waste generation of blockchain networks. The blockchain network consumes

as much electricity as countries the size of Thailand at the time of the writing. The need for a

more environmentally friendly consensus protocol therefore becomes pivotal. Protocol such
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as Proof-of-Capacity and Proof-of-Spacetime use storage. Using storage is seen as a fairer and

greener alternative by blockchain enthusiasts due to the general purpose nature of storage and

the lower energy cost required by storage. The fact that most storage resources are owned by

companies offering cloud storage solution poses a threat to the decentralized nature of the dis-

tributed ledger. The Proof-of-Interaction (PoI) protocol, proposed by Abegg et al. [2021], takes

as leader the first node that is able to contact and obtain a response from a random sequence

of nodes. This is a bandwidth-based alternative that is more scalable than majority voting.

Along with bandwidth, computing power, and storage, a new resource has emerged with the

advent of cryptocurrencies as a medium of exchange. The Proof-of-Stake protocol, described by

Saleh [2020], selects a node with a probability proportional to the number of cryptocoins it holds.

Consensus protocols are applied so that a blocks are appended sequentially and not at the same

time. Usually the consensus process is divided into time slots, also called rounds. The block

generation time must be higher than the propagation delay in the network. If two blocks are

created at the same time then a fork will occur. Two branches of the blockchain co-exists. A fork

situation then resolves by applying the Longest Chain Rule (LCR).

Definition 1. The Longest Chain Rule states that if there exist several branches of the blockchain then

the longest should be trusted.

This definition implies that a threshold must be chosen in order to decide when shorter branches

of the blockchain should be discarded. For instance, a branch can be considered legitimate if it

is k ∈N blocks ahead of its pursuers. For the consensus protocol to be viable, nodes must be

incentivized to follow the LCR.

This chapter is organized as follows. Section 2.1 gives a brief description of the voting based ways

to get consensus by reviewing the "generals" problem. Section 2.2 goes through the leader based

consensus protocols, including PoW in Section 2.2.1, PoSp in Section 2.2.2, PoI in Section 2.2.3,

and PoS in Section 2.2.4. For an exhaustive list of the existing protocols the reader is referred to

https://tokens-economy.gitbook.io/consensus/.

2.1 Voting system

The problem of reaching consensus in a peer-to-peer network via a majority vote has been

abstractedly compared to generals who must agree on a common battle plan. We start from the

simple two general case before moving on the the situation of interest with several ones.

2.1.1 Two generals problem

Two generals wish to attack a city but they must agree on timing the attack. If they do not attack

at the exact same time then they will fail. They communicate via a messenger who must cross
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enemy territory at the risk of being intercepted. The first general G1 sends a message to the

second one G2 saying

"I will attack tomorrow at dawn"

For the attack to succeed, both generals must attack at the same time. Because their communica-

tion medium is unreliable, then G1 must await confirmation from G2 in order to attack. If G1

does not receive confirmation then she will not attack. G2 is aware of that and respond

"I will follow your lead"

G2 does not know whether the message went through and must wait for confirmation. This

creates an infinite loop of messages and response, as on Figure 2.1. The two general problem is

G1 G2

Attack

Confirmation

Figure 2.1: Message and confirmation loop

deemed unsolvable from a theoretical point of view and corresponds to a situation where two

nodes communicate through an unreliable link. A practical solution for generals is to send many

messengers hoping that at least one of them will succeed. This is only a thought experiment

leading to the several general problem.

2.1.2 Byzantine General problem

The blockchain network contains more than two nodes, these nodes must agree on the transac-

tions to confirm. In a permissionless blockchain the nodes do not trust each other. The problem

of the previous section generalizes to more than two generals, assuming that some generals

are traitors which corresponds to faulty nodes in the network. This problem is referred to as

The "Byzantine general problem" and was coined by Lamport et al. [1982]. Assume that n > 2

generals must agree on a common battle plan for instance "Attack" (A) or "Retreat" (R) and that

they can only communicate by two party messages. Denote bym(i, j) the message sent by general

i to general j. Each general j receives n− 1 messages and applies a function f to determine the

course of action, for instance

f ({m(i, j); i = 1, . . . ,n}) =


A, if

∑n
i=1 Im(i,j)=A > n/2,

R, else.

If there are no traitors, each general is communicating the same value to all the peers and

consensus is reached as in Figure 2.2a. If one general is traitor, then he might not communicate

the same value to all the generals and no consensus can be reached. It is the case for G4 in

Figure 2.2b. To handle such a situation, specific roles must be assigned to the generals. One of
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G1

G2

G3

G4

G5

f (A,R,R,A,A) = A

f (A,R,R,A,A) = A

f (A,R,R,A,A) = A

f (A,R,R,A,A) = A

f (A,R,R,A,A) = A

AR

RR

RA

AA

(a) No traitor

G1

G2

G3

G4

G5

f (A,R,R,R,A) = R

f (A,R,R,R,A) = R

f (A,R,R,R,A) = R

f (A,R,R,?,A) =?

f (A,R,R,A,A) = A

AR

RR

RR

AA

(b) One traitor

Figure 2.2: Majority vote with or without a traitor

them become the leader and the other are the lieutenants. We aim at finding an algorithm such

that

C1 All the loyal lieutenants obey the same order

C2 If the commanding general is loyal, then every loyal lieutenants obey the order he sends

A first result from Lamport et al. [1982] is the following

Theorem 1. There are no solution to the Byzantine General problem for n < 3m+ 1 generals where m

is the number of traitors.

Proof. Consider the situation where n = 3 and m = 1. The traitor is either the commander or one

of the lieutenants as shown in Figure 2.3.

C

L1 L2

A
A

A

R

(a) Commander is loyal

C

L1 L2

A
R

R

A

(b) Commander is a traitor

Figure 2.3: Majority vote with or without a traitor

Unfortunately for Lieutenant 2, there is no way for her to tell apart the situation pictured

in Figure 2.3a and Figure 2.3b and therefore no way to ensure both C1 and C2. We prove the
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result for n > 3 by contradiction. Assume that there is a way to verify both C1 and C2 with

3 < n < 3m+ 1. We then construct a solution with generals by having one general simulate the

commander plus at most m− 1 generals, and the other two simulating at most m generals. One

of the generals gather all the traitors and is therefore a traitor. The other two are loyal generals

as they only simulate loyals general. We have built a solution with three generals that we know

is impossible.

Now we need an algorithm that allows n > 3m+ 1 generals to deal with m traitors. The ’Oral

Message’ algorithm denoted by OM(m) and summarized in Algorithm 1 can handle m traitors if

the number of generals verifies n > 3m+ 1. Before looking into the theoretical justification of

Algorithm 1 The Oral message algorithm OM(m)

1: if m = 0 then;

2: for i = 1→ n− 1 do

3: Commander sends vi = v to lieutenant i

4: Lieutenant i set their value to v

5: end for

6: end if

7: if m > 0 then;

8: for i = 1→ n− 1 do

9: Commander sends vi to lieutenant i

10: Lieutenant i uses OM(m-1) to communicate vi to the n− 2 lieutenants

11: end for

12: for i = 1→ n− 1 do

13: Lieutenant i set their value to f (v1, . . . ,vn−1)

14: end for

15: end if

OM(m), let us illustrate the algorithm with an example.

Example 1. Consider the situation where n = 4 and m = 1 shown in Figure 2.4. If the commander is

loyal then one of the lieutenant is a traitor, see Figure 2.4a. The commander gives the order to attack

to all 3 lieutenants. Lieutenant 3 tells the other that she heard retreat from the commander. The loyal

lieutenants then apply the map f to agree on their value

f (A,A,R) = A,

which coresponds to the order the commander sent, hence IC1 and IC2 are satisfied. If the commander

is a traitor as in Figure 2.4b, then he sends conflicting order to the lieutenant but after communicating

the value they received to each other finally agree on the following value

f (A,R,R) = R,

hence IC1 is satisfied and IC2 can be ignored since the commander is a traitor.
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C

L1

L2

L3

A
A

A

A

A R

A

(a) Commander is loyal

C

L1

L2

L3

A
R

R

A

R R

R

(b) Commander is a traitor

Figure 2.4: Illustration of the OM(m) algorithm in the case where n = 4 and m = 1.

Theorem 2. Algorithm OM(m) satisfies conditions IC1 and IC2 if n > 3m+ 1.

Proof. The proof follows from induction.

First assume that the commander is loyal. For m = 0, the commanders simply sends the value v

to all the lieutenants and IC2 holds. Assume that OM(m− 1) works when the commader is loyal.

The commander sends v to all the lieutenants. The lieutenants then applies OM(m−1). Because

n−1 > 2k+m−1, then it follows from the induction hypothesis that each loyal lieutenants get the

value v for each of the loyal lieutenants j. The loyal lieutenants n−1−m > 2k−1 > m outnumber

the traitorous lieutenants and therefore set their value to

f (v1, . . . , vn−1) = v,

and both IC1 and IC2 are satisfied.

Let us assume that the commander is a traitor, we only have to worry about IC1 in that case.

There are at most m traitors and the commander is one of them. We therefore have m−1 traitors

among the lieutenants. Since the total number of lieutenants exceeds three times the number of

traitors n− 1 > 3m > 3(m− 1) then by applying OM(m− 1) all the loyal lieutenants receive the

same vector of values v1, . . . , vn−1, agree on the same value

f (v1, . . . , vn−1) = v,

which leads to the verification of IC1.

The main problem associated to this Oral message algorithm is the number of messages is

nm+1 which is prohibitive for large values of n and m. A celebrated algorithm, called Practical

Byzantine Fault Tolerance (PBFT) has been developped later on by Castro and Liskov [1999]

but still not fast enough to enable the infinite growth of the network associated to public and

permissionless blockchains.
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2.2 Leader system

The scalability issue can be solved by opting for a leader based mechanism instead of a majority

vote mechanism. The protocols presented in this section use computational power, storage and

bandwidth to elect a leader each time a new block must be appended to the blockchain.

2.2.1 Proof-of-Work

The bitcoin blockchain relies on a consensus protocol based on computational power called

Proof-of-Work (PoW), presented in Nakamoto [2008]. A block consists of

• a header

• a list of "transactions" that represents the information recorded through the blockchain.

The header usually includes

• the date and time of creation of the block,

• the block height which is the index inside the blockchain,

• the hash of the block

• the hash of the previous block.

The hash of a block is obtained by concatenating the header and the transactions in a large

character string thus forming a "message" denoted by m, to which a hash function h is applied.

Definition 2. A hash function is a function that can map data of arbitrary size to fixed-sized values,

h : {0,1}∗ 7→ {0,1}d

The hash functions used in blockchain applications must be cryptographic, i.e.

• quick to compute

• one way

• deterministic

Remark 1. It must be nearly infeasible to generate a message with a given hash value or to find two

messages with the same hash value. A small change in the message should change dramatically the

hash value so that the new hash value appears to be uncorrelated to the previous hash,

if m1 ≈m2 then h(m1) , h(m2).

We will not expand on how to build such a cryptographic hash function, we refer the interested reader

to the work of Al-Kuwari et al. [2011].
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In the bitcoin blockchain as well as in many other applications, the standard is the SHA-256

function which converts any message into a hash value of 256 bits. The latter is usually translated

into a hexadecimal digest, for instance the hash value of the title of the present manuscript reads

as

98b1146926548f6b57c4347457713ff2f035beda9c93f12fbc9b202e9c512e80.

Mining a block means finding a block hash value lower than some target which can only be

achieved by brute force search thanks to the properties of cryptographic hash functions. In

practice, the search for an appropriate hash value, referred to as a solution, is done by appending

a nonce to the block message before applying the hash function. A nonce is a 32 bits number,

drawn at random by miners until a nonce resulting in a proper block hash value is found. For

illustration, consider the block in Figure 2.5.

Figure 2.5: A block that has not been mined yet.

The hash value in decimal notation is 1.43e76 while the maximum value for a 256 bits number

is 2256 − 1 ≈ 1.16e77. We refer to the latter as the maximal target and denote it by Tmax. The

Proof-of-Work protocol sets a target T < Tmax and ask miners to find a nonce such that the hash

value of the block is smaller than T . Practitioners would rather talk about the difficulty which

is defined as D = Tmax/T . If the difficulty is one, any hash value is acceptable. Increasing the

difficulty reduces the set of allowable hash values, making the problem harder to solve. A hash

value is then called acceptable if its hexadecimal digest starts with a given number of zeros. If

we set the difficulty to 24, then the hexadecimal digest of the hash of the block must start with

at least 1 leading zero, making the hash value of the block in Figure 2.5 not acceptable. After

completing the nonce search we get the block in Figure 2.6. Note that it took 5 attempts to

Figure 2.6: A mined block with a hash value having on leading zero.

find this nonce. The number of needed trials is geometrically distributed with parameter 1/D,
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which means that with a difficulty of D = 24 it takes on average 16 trials. The protocol adjusts

the difficulty automatically every 2,016 block discoveries so as to (globally) maintain one block

discovery every 10 minutes on average. The time between two block discoveries depends on

the number of hash values computed by the network at a given instant. At the time of writing,

the network computes 182.58 Exahashes per second and the difficulty is 27,967,152,532,434.1

For an exhaustive overview of the mining process in the bitcoin blockchain, we refer the reader

to the book of ?, Chapter 10. As each trial (of the system) for mining a block is independent of

the others and leads to a success with very small probability, the overall number of successes

is binomially distributed and will be very well approximated by a Poisson random variable.

This justifies the Poisson process assumption made in the sequel to model the block arrival and

the reward collecting processes. Empirical studies of the block inter-arrival times data tend to

confirm this hypothesis, see the work of Bowden et al. Bowden et al. [2020]. The information

recorded in a public blockchain may be retrieved by anyone and can be accessed through a

blockchain explorer such as blockchain.com, the content of the block of height #724724 may be

viewed through the following link block content.

The PoW protocol implies that the nodes are running computations 24/7 therefore consuming

humungous quantity of electricity. Bitcoin mining originally started by running computations

using the Central Processing Unit (CPU). It turns out that certain kinds of computation are more

efficient on Graphics Processing Unit (GPU) than on CPUs. CPU is designed to complete a wide

variety of task while computing hashes is very specific. GPU are tailored to run thousands of

computation of the same type. Miners then turned to GPUs leading to a shortage of graphics

card at the expense of PC gamers around the world! Eventually GPU got replaced by Application

Specific Integrated Circuits (ASICs) that are designed to complete very specific task compared

to graphic cards. ASICs consumes 10 times more power than graphic cards but compute 10,000

more hashes than a graphic card per time unit. Miners then decided to equip themselves with

ASIC chips leading to harmful consequences

• Increase of the network electricity consumption

• Increase in the e-waste generation. ASICs are single purpose and it cannot be repurpose

for any other task. When ASICs become obsolete with the arrival of a new generation of

chips, they are thrown in the trash.

• The main manufacturer of ASICs is a company called BITMAIN which equips major

mining pool such as Antpool and BTC.com. A threat on centralization exists since a

company like BITMAIN could take control of the network by owning more than half of

the overall hashpower.

A pro-ASIC argument is that it would be impossible for anyone (apart from BITMAIN) to

suddenly acquire enough of these chips to have more than half of the world’s hash power.

1Source: bitcoinblockhalf.com
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2.2.2 Proof-of-SpaceTime and Proof-of-Capacity

Consensus protocol based on storage capacities are seen by many as a fairer and greener

alternative to PoW. We describe below two such protocols Proof-of-Capacity and Proof-of-

Spacetime.

Proof-of-Capacity

In the Proof-of-Capacity, miners compute hashes and cache the result on their hard disk space.

Mining then only requires to search through the cache for an admissible solution.

Proof-of-Spacetime

In the Proof-of-Spacetime, the nodes store data and produce proofs to show that the data has

been stored for a given time period. The probability of a node being chosen is proportional to

the amount of data stored. This protocol has been designed for a specific application allowing

nodes to provide storage to clients through the Filecoin project.

To some extent the Proof-of-Capacity protocol is similar to PoW while the Proof-of-Spacetime

shares similarities with the Proof-of-Stake protocol which is discussed below.

Such protocols do not generate ewaste because disk space can always be used for some other

purpose. Storing data is less energy consuming than computing hashes. The problem of hiring

external storage capacities from provider remains.

2.2.3 Proof-of-Interaction

The Proof-of-Interaction protocol, introduced by Abegg et al. [2021], asks each validating node

to get in touch with a sequence of nodes. The number of nodes and the nodes to be contacted

are drawn randomly so that the time to complete the task is also varying from one node to

another. The block reward is shared by the contacting and responding nodes to create an

incentive compatible environment. If we assume that the time required to complete the task is

exponentially distributed then the time to generate a new block is the minimum of exponential

random variables which is again exponentially distributed. PoI is still in the developping phase

and many interesting work must be done to assess the security and viability of such protocol.

Some nodes may indeed collude to send replies faster or not to send replies to some node. It is

necessary to evaluate the probability and the opportunity for the nodes to collude.

2.2.4 Proof-of-Stake

Besides bandwidth, computing power and storage, one ressource that appears with the advent

of cryptocurrencies as medium-of-exchange and store-of-value asset are the cryptocoins. Each

time a block must be appended to the blockchain, a coin is drawn at random. The owner of that
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coin appends a new block and collect the reward.

Let the network be of sizeN . We denote by πti the proportion of coins owned by node i ∈ {1, . . . ,n}

at time t ∈N. Note that πti is exactly the probability of node i being elected as leader at time t,

we have 
πti > 0,∑N
i=1π

t
i = 1,

for t > 0.

Denote by St the total number of coins in circulation at time t and by Rt the size of the reward

for appending a new block at time t. Let Ati be the event of node i appending a block at time t,

the share of coins then evolves as

πti =
S ·π0

i +
∑t−1
s=1 IAti

Rs

S +
∑t−1
s=1Rs

,

where

IA =


1 if A occurs,

0 otherwise.

Two potential issues needs to be studied

• The Nothing-at-Stake (NaS) problem: If a a fork is ongoing then each branch will elect a

leader who will append a block, collect the reward and perpetuate the disabreement.

• The rich get richer problem: When a node is chosen, it becomes richer which increase its

likelihood to be chosen in future rounds.

The "rich get richer" problem will be extensively studied in Chapter 5. Regarding the NaS

problem, the nodes when chosen by a branch decide whether they want to add a block, it is

an option. The cryptocoin value comes from its use as a medium of exchange. A long lasting

disagreement results in a useless cryptocoin with no value.

Let τ be the duration of the fork and let δ ∈ (0,1) be a discount rate, then the present value of a

coin at τ is 1/(1 + δ)τ . If P(τ =∞) > 0 then the coin value is zero when taking the expectation.

The nodes are therefore incentivized to follow the Longest chain rule in order to resolve the fork

situation as soon as possible. This is essentially the rationale in Saleh [2020] to show that

• The coin value reaches a maximum if all the nodes follow the longest chain rule

• There exists an equilibrium in which the nodes follow the LCR if

minπ0
i · S ≥

R0

δ(1− δ)2 ,

which corresponds to a minimum stake condition.
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• If
∑
tRt <∞ then there exist no equilibrium for which

P(τ =∞) > 0.

A modest reward schedule precludes the posssibility of an ever lasting fork.

A practical implementation of the PoS protocol to create a cryptocurrency is PeerCoin, see the

white paper by King and Nadal [2012]. The notion of coin age is introduced, the stake is actually

defined by the number of coins times the number of time period during which the coins was

hold. When a peer finds a block, a coinstake transaction is made that transfers the node its own

coin to reset the coin age to zero.
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Chapter 3

Decentralized Finance and Data

Analysis

3.1 Decentralized Finance

Let us first list the distinctions between traditional finance (TradFi) and decentralized finance

(DeFi). TradFi is often characterized by high access barriers, requiring specific criteria such as

bank accounts, whereas DeFi eliminates these barriers, allowing universal participation. TradFi

operates on centralized systems where banks serve as the primary record keepers, exposing

them to cyber risks, whereas DeFi utilizes a decentralized ledger system, enhancing security and

reducing such vulnerabilities. Moreover, TradFi is plagued by high transaction costs, including

fees for account maintenance and wire transfers, and relies on intermediaries for transactions; in

contrast, DeFi minimizes these costs by using smart contracts, although users must still handle

gas fees. Transactions in TradFi, especially cross-border ones, can be slow, taking days to settle,

while DeFi offers near-instant settlement. Furthermore, TradFi lacks transparency and can

be difficult to audit, whereas DeFi provides a publicly available ledger and open-source code,

ensuring greater transparency and auditability. Additionally, TradFi operations are restricted by

geographical and regulatory constraints, and are often limited to business hours, while DeFi

offers 24/7 global accessibility without censorship or restrictions by central authorities. TradFi’s

challenges in providing fractional ownership for assets like real estate and art are addressed in

DeFi through the tokenization of real-world assets. Lastly, TradFi often relies on outdated IT

solutions, which stifles innovation and interoperability, whereas DeFi fosters rapid innovation

and enables seamless interoperability across platforms and projects. These discussion can be

found for instance in the bok of Lipton and Treccani [2021].

A fundamental application of DeFi are exchange platforms that allow users to trade the

different kind of cryptoassets. We are going to focus on decentralized exchange in the next

section.
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3.2 Decentralized Exchanges (DEXs) and Automated Market

Makers (AMM)

If you were to buy your first units of cryptoasset, you might turn to a centralized exchange

platforms for simplicity. Centralized exchange platforms, often referred to as traditional ex-

changes, are operated by a central authority or company that facilitates trading between users.

These exchanges offer convenience and liquidity, as well as features like advanced trading

options and customer support. However, they also introduce a single point of failure and require

users to trust the exchange operator with their funds and personal information, which can

be vulnerable to hacks or regulatory actions. Trading on centralized exchange further also

include non transparent and fluctuating transaction cost. On the other hand, decentralized

exchange platforms operate on blockchain technology, allowing users to trade directly with

each other without the need for an intermediary. This peer-to-peer model eliminates the need

to trust a central authority and offers increased security and privacy since users retain control

of their funds throughout the trading process. However, decentralized exchanges may suffer

from lower liquidity and slower transaction speeds compared to centralized exchanges, and they

often lack features like fiat currency support and customer service. Despite these trade-offs,

decentralized exchanges are gaining popularity due to their commitment to decentralization

and censorship resistance. Censorship resistance means that transactions and trading activities

cannot be easily censored, blocked, or controlled by any single party, including governments or

regulatory agencies.

Decentralized exchanges (DEXs) Exchange of one cryptocurrency token for another, with one

token typically being more volatile or risky while the other aims to maintain stability. This

pairing frequently involves a stablecoin, a type of cryptocurrency designed to minimize price

volatility by pegging its value to an external reference asset, such as a fiat currency like the

US dollar. Stablecoins serve as a reliable medium of exchange and store of value within the

cryptocurrency ecosystem, offering traders a way to mitigate the risks associated with price

fluctuations while transacting on DEXs.

Stablecoins: Two main types: fiat collateralized and crypto collateralized.

• Fiat collateralized stablecoins are backed by reserves of fiat currency, held in bank accounts

or other custodial arrangements, with each stablecoin token representing a claim to a

specified amount of the underlying fiat currency. Examples of fiat collateralized stablecoins

include USDT (Tether), USDC (USD Coin), and BUSD (Binance USD).

• Crypto collateralized stablecoins are backed by reserves of other cryptocurrencies, typi-

cally held in smart contracts or decentralized protocols, with the value of the stablecoin

maintained through overcollateralization and algorithmic mechanisms, see Moin et al.
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[2020]. An example is provided in Example 2.

Example 2. One prominent example of a crypto collateralized stablecoin is DAI, which operates on

the Ethereum blockchain. DAI is created and managed by the MakerDAO protocol, a decentralized

autonomous organization governed by MKR token holders. DAI is collateralized by a pool of other

cryptocurrencies, primarily Ethereum (ETH), which users lock into smart contracts known as Col-

lateralized Debt Positions (CDPs) to generate DAI tokens. The value of DAI is maintained close to

one US dollar through a combination of market forces and algorithmic mechanisms, including the

use of oracles to provide price feeds and the automatic adjustment of interest rates to incentivize or

discourage borrowing and lending activities. By leveraging Ethereum’s smart contract capabilities and

a decentralized governance model, DAI offers users a transparent, trust-minimized stablecoin solution

within the decentralized finance (DeFi) ecosystem.

Centralized exchange use a classical order book mechanism to set the prices while DEXs use

Automated Market Makers

Order book-based system1: buyers and sellers place orders to buy or sell assets at specific prices,

creating a dynamic order book that matches buy and sell orders. This system relies on the inter-

action of buyers and sellers to determine the price and liquidity of assets, with prices fluctuating

based on market demand and supply. This require numerous interactions with the protocol and

therefore huge amounts of gas fee. The company that manage the centralized platform plays the

role of market maker in a non transparent ways. It could probably be automatised within a DeFi

application at the cost of writing a complex algorithm in the blockchain programming language

(e.g. solidity for the Ethereum blockchain).

Automated Market Makers (AMMs) Algorithms that use liquidity pools to facilitate trading

without relying on order books. AMMs determine asset prices algorithmically based on the ratio

of assets in liquidity pools, providing liquidity for trades through predefined smart contracts.

While order book-based systems offer more flexibility in price setting and execution, they can

suffer from issues like low liquidity and price slippage, especially in volatile markets. In contrast,

AMMs provide continuous liquidity and can offer lower barriers to entry for traders, but they

may suffer from impermanent loss and may not always provide the best prices for large trades.

Both mechanisms have their strengths and weaknesses, and their suitability depends on factors

such as trading volume, market conditions, and user preferences. To learn more, the reader is

referred to the following survey Xu et al. [2023].

In Dexs we have two characters: The Liquidity Providers (LPs) and the exchange users.

Liquidity Providers (LPs) A liquidity provider is an individual or entity that deposits funds

into liquidity pools on the DEX, allowing users to trade assets without needing a traditional

1https://www.youtube.com/watch?v=Kl4-VJ2K8Ik
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order book or centralized intermediary.

In a decentralized exchange (DEX), liquidity providers play a crucial role in facilitating

trading activities and maintaining liquidity within the exchange. A liquidity provider is an

individual or entity that deposits funds into liquidity pools on the DEX, allowing users to trade

assets without needing a traditional order book or centralized intermediary.

Here’s how liquidity providers contribute to a DEX:

1. Providing Liquidity: Liquidity providers deposit pairs of assets into liquidity pools, which

are smart contracts that hold reserves of each asset. These assets are used to facilitate

trades on the DEX. By contributing liquidity to the pools, providers ensure that there are

sufficient funds available for users to trade with.

2. Earning Fees: In return for providing liquidity, liquidity providers earn fees from trading

activities that occur within the liquidity pools. When users execute trades on the DEX,

they pay a small fee, a portion of which is distributed to liquidity providers as a reward

for their contribution. This incentivizes providers to deposit funds into the liquidity pools

and helps maintain liquidity on the exchange.

3. Maintaining Price Stability: Liquidity providers help maintain price stability for assets

traded on the DEX by ensuring that there are ample funds available for buying and selling.

This reduces slippage—the difference between the expected price of a trade and the actual

price at which the trade is executed—and improves the overall trading experience for

users.

4. Adjusting Positions: Liquidity providers may adjust their positions in the liquidity pools in

response to changes in market conditions, asset prices, or trading volume. By rebalancing

their holdings or adding/removing liquidity as needed, providers help optimize liquidity

provision and maximize their returns.

Exchange User: An exchange user refers to an individual or entity that interacts with an

exchange platform to buy, sell, or trade assets. In the context of cryptocurrency exchanges, an

exchange user is someone who utilizes the exchange’s services to engage in trading activities

involving cryptocurrencies or other digital assets.

The impact of trades, and liquidity provision/withdrawal on prices is governed by constant

fuction market makers.

Constant Function Market Makers (CFMMS: Mathematical formula or algorithm that deter-

mines the pricing and liquidity provision mechanism within the liquidity pools. It is called

"constant function" because it maintains a constant product of the quantities of two assets in the

liquidity pool.
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We focus on a prominent example of such function known as the Constant Product Market

Makers Function. Consider an exchange where you can trade token X for token Y and conversely.

The exchange starts operating as a first liquidity provider comes in and deposit x of X and y of

Y , therefore setting k as

x · y = k.

The liquidity provided by this LP is measured by L =
√
k =
√
x · y (geometric mean).

Example 3. Consider a ETH/DAI Constant Product Market Maker. Assume that the current price for

one ETH is P = $500. A LP shows up and deposits 20 ETH plus 10,000 DAI which sets

k = 20,000 and L =
√
x · y ≈ 447.

Assume that a trader wish to swap X for Y by acquiring dy. He then must deposit in the

pool dx of X that solves

(x+ dx)(y − dy) = k⇔ dx =
x · dy
y − dy

.

Trades (or swap) occur on a curve as pictured on Figure 3.1. Usually, the protocol reward LPs by
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(b) State after the trade/swap

Figure 3.1: Trade on the x · y = k curve.

including a fee for each trade. The trader then deposits an additional α ·dx worth of fee that

will be distributed to the LPs proportionnally to their Liquidity provision to the pool. Let us

continue Example 3 to illustrate the swap of an arbitrageur.

Example 4. Say, an arbitrageur takes dy = 2 ETH. She then deposits dx = 1,111, and give out

0.3 · 1,111 = 333 worth of fees, assuming that α = 0.3. As a consequence, the price of ETH in the pool

rises to
x+ dx
y − dy

= $617.

Another LP can provide dx to the pool and therefore deposits also dy = y
xdx so that the price

does not change. The curve is bumped to a new level

k′ = (x+ dx)(y + dy),
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Figure 3.2: Change in the curve after adding liquidity.

as shown on Figure 3.2. The overall liquidity level also rises as

L′ =
√
x · y +

√
dx · dy.

The fees are collected by both LPs accodring to the following weights

w1 =
L
L′

, and w1 =
L′ −L
L′

.

We resume Example 4 with the following example

Example 5. A new LP deposits $5,000 worth of tokens to the pool which splits into

dx = 2,500, and dy = 5

The new levels of liquidity become

k′ = 312,500, and L′ ≈ 559.

The weights of both LPs are given by

L
L′

= 0.8 and
L′ −L
L′

= 0.2.

AMM based DEXs commonly suffer from two things: Slippage and divergence (aka imper-

manent) loss.

Slippage: Slippage refers to the difference between the expected price of a trade and the

actual price at which the trade is executed. When a user places a trade on an AMM-based DEX,
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the price of the asset may change as a result of the trade itself. This is because the constant

product formula used in AMMs adjusts the price of assets based on changes in supply and

demand within the liquidity pool. As a result, larger trades or trades in illiquid pools may cause

significant price changes, leading to slippage. To mitigate slippage, traders can utilize strategies

such as breaking up large orders into smaller ones, selecting pools with higher liquidity, or

using advanced trading techniques. Additionally, ongoing improvements in AMM designs

and protocols aim to minimize slippage and enhance the trading experience on decentralized

exchanges. This behavior may be exploited by validating nodes of the blockachin that are aware

of all the pending transaction and may front run well chosen transaction. Such an attack is

described in Example 6 and discussed in Park [2023].

Example 6 (Sandwich attack). The sandwich attack is a form of front-running manipulation that can

occur on decentralized exchanges (DEXs) utilizing automated market makers (AMMs). In a sandwich

attack, an attacker exploits the predictable price movement resulting from a large trade to profit at the

expense of other traders.

Here’s how the sandwich attack typically works:

1. Identifying the Target Transaction: The attacker monitors the blockchain for pending or recently

submitted transactions that involve a large trade on a particular AMM-based DEX. Large trades

can create significant price movements due to slippage, as discussed earlier.

2. Front-Running the Target Transaction: Before the target transaction is executed, the attacker

quickly submits their own transactions to the DEX with the intention of exploiting the anticipated

price movement caused by the large trade. The attacker strategically places buy or sell orders in

such a way that they benefit from the price movement.

3. Executing Trades at Favorable Prices: As the target transaction is processed and causes the price

of the asset to move, the attacker’s own transactions are executed at more favorable prices due to

the price impact of the large trade. This allows the attacker to buy low or sell high, effectively

profiting from the price movement caused by the target transaction.

4. Exiting the Position: Once the price movement subsides, the attacker may quickly exit their

position by selling or buying back the asset at a later time, potentially realizing a profit from the

price difference.

The term "sandwich attack" comes from the idea that the attacker places their own transactions on

both sides of the target transaction, effectively sandwiching it between their own trades to exploit the

price movement.

The sandwich attack exploits the inherent transparency and predictability of blockchain transac-

tions, as well as the mechanics of AMMs, to profit at the expense of other traders. To mitigate the

risk of sandwich attacks, traders should exercise caution when executing large trades on DEXs and

consider employing strategies to minimize slippage and prevent front-running. Additionally, ongoing
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improvements in blockchain technology and DEX protocols aim to enhance security and protect against

such attacks.

Divergence Loss: Also known as impermanent loss, is a phenomenon that occurs when

providing liquidity to an automated market maker (AMM) liquidity pool, such as those found

in decentralized exchanges (DEXs). It refers to the difference in value between holding assets in

the liquidity pool versus simply holding them in one’s wallet.

1. Liquidity providers deposit pairs of assets into a liquidity pool on a DEX. For example,

they may deposit equal amounts of ETH and DAI into a liquidity pool for the ETH-DAI

trading pair.

2. As traders buy and sell assets on the DEX, the prices of the assets within the liquidity pool

can change. These price changes can cause the ratio of the deposited assets to deviate from

the initial ratio.

3. If the price of one asset in the pool increases relative to the other, liquidity providers will

have more of the asset that increased in value and less of the other asset. As a result, when

they withdraw their liquidity from the pool, they will receive fewer of the appreciating

asset and more of the depreciating asset compared to their initial deposit.

4. The difference in the value of the assets held in the liquidity pool compared to if they were

simply held in the wallet is referred to as divergence loss or impermanent loss.

This loss is considered "impermanent" because it may decrease or disappear entirely if the

prices of the assets revert to their initial ratio (stong assumption!!!) by the time the liquidity is

withdrawn.

Let us consider a pool that contains token X and Y . The price of Y in the pool is given by

P =
x
y
,

in terms of token X. If the Price of Y becomes P ′ > P on another trading venue then arbitrageurs

wish to find

argmax
dy>0

dy · P ′ − dx · (1 +α) = argmax
dy

dy · P ′ −
x · dy
y − dy

(1 +α).

Solving this optimization problem, we have

dy∗ = y −
√
k(1 +α)
P ′

.

The arbitrageurs profit is

dy∗ · P ′ − dx∗(1 +α)

which means that the LPs incur a loss of

y · P ′ + x − [(y − dy∗) · P ′ + x+ dx∗(1 +α)],
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if they withdraw. The loss is said impermanent because if the LPs do not withdraw and the price

revert to the initial ratio of token in the pool then no incurred loss. Let us build on Example 5.

Example 7. Recall that the initial price of ETH in the pool was P = $500. Assume that the price in

another trading venue is P ′ = $550 and α = 0 then

• dy∗ = 0.93

• The impermanent loss is then dy∗ · P ′ − xdy∗

y−dy∗ = $23

Increasing α then mitigate the magnitude of impermanent loss. Take α = 0.05 tehn we have

• dy∗ = 0.46

• The impermanent loss is then dy∗ · P ′ − xdy∗

y−dy∗ = $5.81.

DEXs form a pillar of the DeFi environment but as we have seen there is room for improve-

ment which means many avenues for future research work!
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Chapter 4

Security of blockchain systems

The security evaluation of blockchain systems consists of calculating the probability of a suc-

cessful attack on the blockchain. We will focus on the double spending attack. Section 4.1

provides a brief overview through a simple example. The probability of a successful double

spending attack is computed within a random walk model in Section 4.2 and counting processes

in Section 4.3.

4.1 Double-spending in PoW

A double spending attack aims to generate a concurrent blockchain to replace the main one.

Consider the following scenario:

1. Marie sends BTC10 to John.

2. The transaction from Marie to John is recorded in the blockchain.

3. John is advised to wait for α confirmations, meaning α − 1 blocks need to be appended

after the block where the Marie to John transaction is recorded.

4. Once α confirmations have been received, John ships the goods.

5. Meanwhile, Marie has started working on her own blockchain version where the Marie to

John transaction is replaced by a Marie to Marie transaction.

6. At the shipment date, the main blockchain is ahead by xx blocks.

7. Marie’s goal is then to work on her blockchain branch to catch up with the main branch. If

she manages to do that, her branch will replace the public branch, and she will recover her

bitcoin. She can therefore spend these bitcoins again, hence the name double spending.

The race between the two competing branches of the blockchain is summarized on Figure 4.1.
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M→ J

M→M

Figure 4.1: Double spending race illustrated, here we have α = 4 and X = 2.

4.2 Random walk model

We define a discrete-time stochastic process (Xn)n≥0 as the difference in length between the

public and the private branches of the blockchain. At each time step, when a block is found, it

belongs to the main branch with probability p and to the other branch with probability q = 1−p.

Here, the parameter p represents the proportion of hashpower owned by the honest miners,

while q represents that of the attacker. We have

X0 = X, and Xn = x+ ξ1 + . . .+ ξn.

The ξi ’s are i.i.d. random variables such that

P(ξ = 1) = p ∈ (0,1), and P(ξ = −1) = 1− p = q,

(Xn)n≥0 is therefore a random walk on Z. We assume that p > q so that the attacker does not

hold more than half of the total hashpower. Define the double spending time as

τ0 = inf{n > 0 ; Xn = 0}.

Our goal is to study the distribution of this stopping time with respect to the filtration

Fn = σ (ξ1, . . . ,ξn), n ≥ 1.

An illustration of this first-hitting time problem is provided in Figure 4.2. Let us denote by

n

Xn

1
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Figure 4.2: Illustration of the first-hitting time problem of a double spending attack.

Px(·) = P(·|X0 = x) and Ex(·) = E(·|X0 = x)

We are interested for now in the conditional distribution of τ0 provided that X0 = x ≥ 0.
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4.2.1 Double spending probability

The double spending probability is defined as Px(τ0 <∞). We can compute this probability by

solving the so-called gambler’s ruin problem. Let a ≥ x and define

τa = inf{n ≥ 0 ; Xn = a}.

Further denote by

φ(x,a) = P(τ0 < τa).

Note that

Px(τ0 <∞) = lim
a→∞

φ(x,a).

We have the following result

Theorem 3.

φ(x,a) =


(q/p)x−(q/p)a

1−(q/p)a if p , q,

a−x
a if p = q.

(4.1)

We give two proofs for this result, the first one uses simple first step analysis exploiting the

Markov property of the random walk. The second one uses Martingale and the optional stopping

theorem.

Proof 1:

By the law of total probability, we have

φ(x,a) = pφ(x,a+ 1) + (1− p)φ(x,a− 1), x ≥ 1. (4.2)

We also have the boundary conditions

φ(0, a) = 1 and φ(a,a) = 0. (4.3)

Equation (4.2) is a linear difference equation of order 21 associated to the following characteristic

equation

px2 − x+ 1− p = 0 (4.4)

1. Assume that p = 1− p = 1/2 then (4.4) has one solution

r = 1

The solutions of (4.2) are given by

φ(x,a) = A+Bx

Using the boudary conditions (4.3), we deduce that

φ(x,a) =
a− x
a
,

as announced.
1For details about such equation on ecan check for instance https://mjo.osborne.economics.utoronto.ca/index.

php/tutorial/index/1/sod/t
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2. Assume that p , 1− p which has two roots on the real line with

r1 = 1, and r2 =
1− p
p

.

The solution of (4.2) is given by

φ(x,a) = A+B
(

1− p
p

)x
x,

where A and B are constant. Using the boudary conditions (4.3), we deduce that

φ(x,a) =
(q/p)x − (q/p)a

1− (q/p)a
,

as announced.

For the second proof we need the notion of martingale

Definition 3. A stochastic process (Xn)n≥0, is called a martingale with respect to a filtration Fn, if

(i) Xn is Fn-adapted

(ii) E(Xn) <∞ for n ≥ 0

(iii) E(Xn|Fn−1) = Xn−1

and the optional stopping theorem.

Theorem 4. Let T be a bounded stopping time for the martingale (Xn)n≥0 then it holds that

E(XT ) = E(X0).

Proof 2:

Let T = τ0 ∧ τa, it is a bounded stopping time.

Assume that p = 1− p = 1/2 then (Xn)n≥0 is a martingale. We apply the optionnal stopping

time theorem at T on (Xn)n≥0. We have

E(X0) = x

on one hand and

E(XT ) = E(Xτ0
Iτ0≤τa +XτaIτ0>τa )

= aP(τ0 > τa)

= a [1−φ(x,a)] .

From E(X0) = E(XT ), we deduce that

φ(x,a) =
a− x
a
.

Assume that p , 1− p. Define the process

Mθ
n = exp

[
θXn −nκξ (θ)

]
, for n ∈N and θ ∈R,
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where

κξ (θ) = log
[
E

(
eθξ

)]
,

is the cumulant generating function of ξ.

Lemma 1. Take s so that κξ (θ) <∞ then (Mθ
n )n≥0 is a Fn-martingale.

Proof. We have that

E(Mθ
n |Fn) = E

{
exp

[
θXn −nκξ (θ)

]
|Fn−1

}
= exp

[
θXn−1 −nκξ (θ)

]
E [exp(sξn) |Fn−1]

= exp
[
θXn−1 −nκξ (θ)

]
exp[κξ (θ)]

= Mn−1.

The equation κξ (θ) = 0 is equivalent to

pes + qe−s = 1,

which admits γ = log(q/p) as only non-zero solution. The process (eγXn )n≥0 is a Fn-Martingale.

Define τa = inf{n ≥ 0 ; Xn = a}, for a > z. We apply the optionnal stopping time theorem at T on(
eγXn

)
n≥0

. We have

Ex(eγX0 ) = eγx,

and

Ex(eγXT ) = Ex(eγXτ0 Iτ0≤τa + eγXτa Iτ0>τa )

= φ(x,a) + eγa(1−φ(x,a)).

From Ex(X0) = Ex(XT ), we deduce that

φ(x,a) =
eγx − eγa

1− eγa
.

which is equivalent to (4.1) (recall that γ = log(q/p)).

Corollary 1. Assume that p > q then the double spending probability is given by

Px(τ0 <∞) =
(
q

p

)x
.

Proof. We have

P(τ0 <∞) = lim
a→∞

φ(x,a) =
(
q

p

)x
.

In practice the number of blocks x is actually random variable

X = (α −M)+,
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where M corresponds to the number of blocks the attacker managed to mine while the vendor

waits for α confirmations. If we assume that a block mined by the honest miners is a success

while a block mined by the attacker is a failure then M actually counts the number of failure

before α successes. We have that M ∼Neg-Bin(α,p) where M has a probability mass function

(p.m.f.) given by

P(M =m) =
(
α +m− 1

m

)
pαqm.

Whenever X = 0 then double spending occurs right away as φ(0) = 1. To derive the double

spending probability, we condition upon the values of X via the law of total probability as

P(Double Spending) = P(M ≥ α) +
α−1∑
m=0

(
α +m− 1

m

)
qαpm.

The analysis conducted here is similar to that of Rosenfeld [2014].

4.2.2 Double spending time

In the block mining world, time is money. Every hour spent computing hashes is costly in

terms of energy. It is therefore very interesting to know whether a double-spending attack is

meant to last long or not. Intuitively, we can think that if it must occur, it should happen at

an earlier stage because, as p > 1/2, our random walk (Xn)n≥0 will eventually drift towards +∞.

The following result provides the probability distribution of τ0 when X0 = x.

Theorem 5. If x = 0 then τ0 = 0 almost surely. If x > 0 then τ0 admits a p.m.f. given by

Px(τ0 = n) =
x
n

(
n

(n− x)/2

)
p(n−x)/2q(n+x)/2 if n ≥ x and n− x is even,

and 0 otherwise.

Proof. We start by showing the following lemma, sometimes referred to as the Markov hitting

time theorem.

Lemma 2.

Px(τ0 = n) =
x
n
Px(Xn = 0), x ≥ 0, and n > 0. (4.5)

Proof. If x = 0 then τ0 = 0 almost surely and both sides of (4.5) equal to 0. Assume that x ≥ 1,

we have that Px(τ0 = n) = 0 and Px(Xn = 0) = 0 whenever n < x or n− x is odd. The rest of the

proof is by induction on n ≥ 1, when n = 1 we have that

Px(τ0 = 1) = 0 =
x
1
Px(X1 = 0), for x > 1,

and

P1(τ0 = 1) = q =
1
1
P1(X1 = 0), for x = 1.
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The property holds for n = 1. Assume that it holds for some n ≥ 1. The law of total probability

yields

Px(τ0 = n+ 1) =
∑

y∈{−1,1}
Px(τ0 = n+ 1|ξ1 = y)P(ξ1 = y)

=
∑

y∈{−1,1}
Px+y(τ0 = n)P(ξ1 = y) (Strong Markov Property)

=
∑

y∈{−1,1}

x+ y
n

Px+y(Xn = 0)P(ξ1 = y).

Note that for any measurable application g we have

Ex[g(ξ1)IXn+1=0] =
∑

y∈{−1,1}
Ex[g(ξ1)IXn+1=0|ξ1 = y]P(ξ1 = y)

=
∑

y∈{−1,1}
g(y)Px(Xn+1 = 0|ξ1 = y)P(ξ1 = y)

=
∑

y∈{−1,1}
g(y)Px+y(Xn = 0)P(ξ1 = y)

Take g(y) = x+y
n and further undo the law of total probability,

Px(τ0 = n+ 1) =
∑

y∈{−1,1}

x+ y
n

Px+y(Xn = 0)P(ξ1 = y)

=
∑

y∈{−1,1}

x+ y
n

Px(Xn+1 = 0|ξ1 = y)P(ξ1 = y)

=
∑

y∈{−1,1}

x+ y
n

Px(ξ1 = y|Xn+1 = 0)Px(Xn+1 = 0)

=
Px(Xn+1 = 0)

n
[x+E(ξ1|Xn+1 = 0)] . (4.6)

Since the ξi are i.i.d. then it holds that

E(ξ1|Xn+1 = 0) = E(ξi |Xn+1 = 0), i = 1, . . . ,n+ 1,

and it follows that

E(ξ1|Xn+1 = 0) =
1

n+ 1

n+1∑
i=1

E(ξi |Xn+1 = 0) =
−x
n+ 1

.

Inserting the above expression in (4.6) yields

Px(τ0 = n+ 1) =
x

n+ 1
Px(Xn+1 = 0).

Remark 2. This proof is direct, simple and inspired from van der Hofstad and Keane [2008]. It is

possible to make it shorter by taking advantage of the ballot theorem. Indeed, consider again the first

hitting problem on Figure 4.2 and reverse the timeline. It corresponds to that of a random walk (Sn)n≥0

that starts at 0, make upward jumps with probability q, and ends up at the level x at time n without

crossing the X axis, see Figure 4.3. We have equivalently

Px(τ0 = n) = P(Sk > 0, 1 ≤ k ≤ n|Sn = x,S0 = 0)P0(Sn = x|S0 = 0),
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(a) Original first hitting problem
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(b) Time reversed first hitting problem

Figure 4.3: Another look at the first hitting time problem.

and

P(Sk > 0, 1 ≤ k ≤ n|Sn = x,S0 = 0) =
x+ (n− x)/2− (n− x)/2

n
=
x
n
.

For proof of the ballot theorem, see Renault [2007]. For a general formulation and application to

queueing see Takács [1962].

To complete the proof, we just note that

Px(Xn = 0) =
(

n
(n− x)/2

)
p(n−x)/2q(n+x)/2

as it corresponds to a trajectory of (Xn)n≥0 starting at X0 = x ending at 0 made of (n−x)/2 upward

jumps and (n+ x)/2 downward one.

Just like in the previous section, the actual double spending time depends on the value of

the random variable Z = (α −M)+.

4.3 Counting process model

Our aim is to go from the discrete time framework of the previous section to a continuous time.

To do so, we will model the length of the blockchain as counting processes. We will consider

renewal processes and more specifically Poisson processes. We start by giving some reminders

on the exponential distribution and counting processes before studying the double spending

time distribution.
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4.3.1 Poisson process, Exponential distributions and friends

Definition 4. A counting process (Nt)t≥0 is a continuous time stochastic process that counts the

occurence of an event over time such that

N0 = 0 and Nt =
+∞∑
k=1

ITk≤t .

where T1,T2,T3, . . . denote the arrival times, with the convention that T0 = 0. Let ∆T0 ,∆
T
1 ,∆

T
2 , . . . be the

sequence of inter-arrival times defined as

∆Tk = Tk+1 − Tk , k = 0,1,2 . . . .

A trajectory of a counting process is given in

t

Nt

∆T0

∆T1

∆T2

∆T3

∆T4

∆T5

T1
•

T2
•

T3
•

T4
•

T5
•0•

1•

2•

3•

4•

5•

Figure 4.4: Trajectory of the counting process (Nt)t≥0.

Definition 5. A Poisson process (Nt)t≥0 is a counting process whose inter-arrival times are i.i.d.

exponential random variables.

Remark 3. A Poisson process belongs to the family renewal processes which are counting process with

i.i.d. inter-arrival times.

Definition 6. A random variable X is exponentially distributed X ∼ Exp(λ) if it has p.d.f.

fX(x) =


λe−λx, if x > 0,

0, otherwise.

For some reasons, we need to introduce the joint distribution of the order statistics of a

uniform random sample.

Proposition 1. Let U1, . . . ,Un be a sample of i.i.d. uniform random variables on (a,b). Denote by

U1:n ≤U2:n ≤ . . . ≤Un:n
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the order statistics of such a sample. The joint distribution of (U(1), . . . ,U(n)) is given by

f(U1:n,...,Un:n)(u1, . . . ,un) =
n!

(b − a)n
Ia<u1<...<un<b(u1, . . . ,un).

and we denote (U1:n, . . . ,Un:n) ∼OSn([a,b])

Proof. Let g : Rn 7→R+ be measurable and bounded. We have that

E[g(U1:n, . . . ,Un:n)] = E

∑
σ∈Sn

g(Uσ (1), . . . ,Uσ (n))IUσ (1)<...<Uσ (n)


where Sn the set of all the permutation of {1, . . . ,n}. We note that

E

[
g(Uσ (1), . . . ,Uσ (n))IUσ (1)<...<Uσ (n)

]
= E

[
g(U1, . . . ,Un)IU1<...<Un

]
=

∫
R
n
g(u1, . . . ,un)Iu1<...<un

1
(b − a)n

dλn(u1, . . . ,un).

It then follows that

E[g(U1:n, . . . ,Un:n)] =
∫
R
n
g(u1, . . . ,un)Iu1<...<un

n!
(b − a)n

dλn(u1, . . . ,un).

We require some additional result about the gamma distribution.

Proposition 2. Let ∆T1 , . . . ,∆
T
n be i.i.d. exponential Exp(λ) random variables, define the sequence

Tk =
∑k
i=1∆

T
i , k = 1, . . . ,n.

1. The Tk ’s are gamma distributed, Tk ∼ Gamma(k,λ) with p.d.f.

fTk (t) =
tk−1e−λtλk

Γ (k)
, t > 0,

where Γ (k) =
∫∞

0 e−xxk−1dx.

2. The joint distribution of (T1, . . . ,Tn) has p.m.f. given by

f(T1,...,Tn)(t1, . . . , tn) = λne−λtnI0<t1<...<tn(t1, . . . , tn)

3. [(T1, . . . ,Tn)|Tn+1 = t] ∼OSn([0, t])

Proof. 1. We use induction on k ≥ 1. For k = 1 we have that ∆T1 = T1 so the property holds.

Assume that the property hold true for some k and consider k + 1. We note that Tk+1 =

Tk +∆Tk+1 then

fTk+1
(t) =

∫ t

0
fTk (x)f∆Tk+1

(t − x)dx

=
∫ t

0

xk−1e−λxλk

(k − 1)!
λe−λ(t−x)dx

=
e−λtλk+1

(k − 1)!
tk

k
=
tke−λtλk+1

k!
.

Exercise 1. Can you propose another way to show this result? Without using induction.
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2. Let g : Rn 7→R+ be measurable and bounded, we have

E[g(T1, . . . ,Tn)] = E[g(∆T1 ,∆
T
1 +∆T2 . . . ,∆

T
1 + . . .+∆Tn )]

=
∫
R
n
g(t1, . . . , t1 + . . .+ tn)f(∆T1 ,...,∆Tn )(t1, . . . , tn)dλn(t1, . . . , tn)

=
∫
R
n
+

g(t1, . . . , t1 + . . .+ tn)λne−λ(t1+...+tn)dλn(t1, . . . , tn)

Let us apply the following change of variable

Φ : (u1, . . . ,un) 7→ (u1,u2 −u1, . . . ,un −un−1) := (t1, . . . , tn),

minding the change in the integration domain as

Φ(R+×]u1,∞[× . . .×]un−1,∞[) = R
n
+

and the Jacobian
∣∣∣dΦ

du

∣∣∣ = 1. It follows that

E[g(T1, . . . ,Tn)] =
∫
R
n
g(u1, . . . ,un)λne−λunI0<u1<...<un(u1, . . . ,un)dλn(u1, . . . ,un).

3. We have that

fT1,...,Tn |Tn+1
(t1, . . . , tn|t) =

fT1,...,Tn,Tn+1
(t1, . . . , tn, t)

fTn+1(t)

=
n!
tn
I0<t1<...<tn<t(t1, . . . , tn, t).

The fact that the Poisson process is a Levy process will be useful later on, so here it is

Proposition 3. Provided that {Nt = n}, the jump times T1, . . . ,Tn have the same distribution as the

order statistic of an i.i.d. sample of n uniform random variable on (0, t), namely it holds that

[T1, . . . ,Tn|Nt = n] ∼ (U1:n(0, t), . . . ,Un:n(0, t)) .

Proof. We have

E [g(T1, . . . ,Tn)|Nt = n]

=
E

[
g(T1, . . . ,Tn)INt=n

]
P(Nt = n)

=
E

[
g(T1, . . . ,Tn)ITn≤tITn+1>t

]
P(Nt = n)

=
n!

e−λt(λt)n

∫
R
n+1
g(t1, . . . , tn)Itn≤t<tn+1

(tn, tn+1)fT1,...,Tn+1
(t1, . . . , tn+1)dλn+1(t1, . . . , tn+1)

=
n!

e−λt(λt)n

∫
R
n

∫ +∞

t
g(t1, . . . , tn)I0<t1<...tn≤t(t1, . . . , tn)λn+1e−λtn+1dλn+1(t1, . . . , tn+1)

=
n!

e−λt(λt)n

∫
R
n
g(t1, . . . , tn)I0<t1<...tn≤t(t1, . . . , tn)λndλn(t1, . . . , tn)e−λt

=
∫
R
n
g(t1, . . . , tn)

n!
tn
I0<t1<...tn≤t(t1, . . . , tn)dλ(t1, . . . , tn).
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The order statistic property of the Poisson process will be useful to solve the first hitting time

problem arising later on.

4.3.2 Levy process and continuous time martingale

Levy processes are the continuous time equivalent of random walks. Let (Ω,F ,Ft ,P) be a filtered

probability space and X a Ft−adapted stochastic process.

Definition 7. X is a Levy process if

1. X0 = 0

2. Xt −Xs
D= Xt−s (Stationary increments)

3. For all n ∈N and 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤ . . . ≤ sn ≤ tn <∞, the increments

Xti −Xsi , i = 1, . . . ,n,

are independent.

4. The trajectories of X are càdlàg (right-continuous and left-limited)

Proposition 4. The following statements are equivalent

1. (Nt)t≥0 is a Poisson process

2. The stochastic process (Nt)t≥0 has

(i) independent increments, it means that for 0 < t1 ≤ . . . ≤ tn, the random variables Nt1 ,Nt2 −

Nt1 , . . . ,Ntn −Ntn−1
are independent.

(ii) stationnary increments in the sense that the event frequency distribution over some time

period of duration s > 0 only depends on s. Indeed, we have that

Nt+s −Nt ∼ Poisson(λs), for s, t ≥ 0.

Poisson processes are prominent examples of Levy processes.

Proof. 1⇒ 2

Assume that (Nt)t≥0 is a Poisson process and let 0 < t1 < . . . < tn be some times. Consider the

folowing probability

P

(
Nt1 = j1,Nt2 −Nt1 = j2, . . . ,Ntn −Ntn−1

= jn
)

such that j1, . . . , jn ∈N. We can rewrite it as

P

(
Tk1
≤ t1 < Tk1+1,Tk2

≤ t2 < Tk2+1, . . . ,Tkn ≤ tn < Tkn+1

)
,
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where ki = j1 + . . .+ ji , i = 1, . . . ,n. Conditionning with respect to Tkn+1 yields

P

(
Tk1
≤ t1 < Tk1+1,Tk2

≤ t2 < Tk2+1, . . . ,Tkn ≤ tn < Tkn+1

)
=

∫ +∞

tn

P

(
Tk1

< t1 < Tk1+1,Tk2
< t2 < Tk2+1, . . . ,Tkn < tn|Tkn+1 = t

)
fTkn+1

(t)dλ(t)

=
∫ +∞

tn

(
kn

j1, . . . , jn

)( t1
t

)j1 ( t2 − t1
t

)j2
. . .

( tn − tn−1

t

)jn e−λttknλkn+1

kn!
dλ(t)

=
e−λt1 (t1)j1

j1!
(t2 − t1)j2 e−λ(t2−t1)

j2!
. . .

(tn − tn−1)jn e−λ(tn−tn−1)

jn!

From the second to the third equality we simply ask that amomg kn uniform random variables

j1 fall inside (0, t1), j2 fall inside (t1, t2), etc...

2⇒ 1

We aim at showing that (T1, . . . ,Tn) has p.d.f. given by

fT1,...,Tn(t1, . . . , tn) = λne−λtnI0<t1<...<tn . (4.7)

Let t1, . . . , tn and h be nonnegative real numbers such that

t1 < t1 + h < t2 < . . . < tn < tn + h,

We have

P(t1 < T1 < t1 + h, . . . , tn < T1 < tn + h)

= P(Nt1 = 0,Nt1+h −Nt1 = 1, . . . ,Ntn −Ntn−1+h = 0,Ntn+h −Ntn ≥ 1)

= e−λt1e−λhλhe−λ[t2−(t1+h)]e−λhλh. . . e−λ[tn−(tn−1+h)][1− e−λh]

= e−λtnλn−1hn−1[1− e−λh]

Divide by hn and let h go to 0 to get (4.7). After applying a change of variable (reciprocal of that

used in the proof of Proposition 2) to recover the joint distribution of (∆T1 , . . . ,∆
T
n ), we see that

the later is actually that of an i.i.d. sample of size n of exponential random variables.

Definition 8. The Laplace exponent of X is given by

κ(θ) = logE(eθX1 ).

Proposition 5. We have

logE(eθXt ) = κ(θ)t, for t ≥ 0

Proof. Let t ≥ 0 and n ∈N, we have

Xt =
n−1∑
k=0

(
X(k+1) tn

−Xk tn
)
.
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It follows that

E

(
eθXt

)
= E

eθ∑n−1
k=0

(
X(k+1) tn

−Xk tn

)
=

n−1∏
k=0

E

eθ(X(k+1) tn
−Xk tn

)
=

n−1∏
k=0

E

(
eθXt/n

)
= E

(
eθXt/n

)n

If we denote by

κt(θ) = logE
(
eθXt

)
then it holds that

κt(θ) = nκt/n(θ),

∀t ≥ 0 and ∀n ∈N. Furthermore, for m ∈N, we have

κm(θ) =mκ(θ) and κm(θ) = nκm/n(θ).

Hence

κt(θ) = tκ(θ) pour t ∈Q

Consider (tn)n≥0 ∈Q (rational numbers) such that tn ↓ t ∈R, taking the limit yields

κt(θ) = tκ(θ) pour t ∈R,

thanks to the cadlag nature of the trajectories of X

Definition 9. X is a Ft-martingale if it holds that

• E(|Xt |) <∞ for t ≥ 0

• E(Xt |Fs) = Xs for every s ≤ t.

Theorem 6. Let X be a martingale and τ be a bounded stopping time, then (Xτ∧t)t≥0 is a martingale

and we have that

E(Xτ ) = E(X0).

Proposition 6 (Wald’s exponential martingale). Let X be a Levy process then the process

Mt = exp[θXt − tκ(θ)] , t ≥ 0.

is a Ft-martingale.
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Proof. Let s ≤ t, we have

E(Mt |Fs) = e−tκ(θ)
E

[
eθXt |Fs

]
= e−tκ(θ)

E

[
eθ(Xt−Xs)+θXs |Fs

]
= e−tκ(θ)eθXsE

[
eθ(Xt−Xs)

]
= e−tκ(θ)eθXse(t−s)κ(θ)

= Ms

4.3.3 Double spending probability

The Proof-of-Work protocol implies a steady block arrival, every 10 minnutes for the bitcoin

blockchain. Each trial (of the network) for mining a block is independent of the others and

leads to a success with very small probability, the overall number of successes is binomially

distributed, very well approximated by a Poisson random variable. This justifies the Poisson

process assumption made in the sequel to model the block arrival.

Denote by (x +Nt)t≥0 and (Mt)t≥0 the number of blocks found by the honest miners and the

attackers respectively. Double spending occurs at time

τ0 = inf{t ≥ 0 ; x+Nt =Mt}.

Assume that (Nt)t≥0 and (Mt)t≥0 are Poisson processes with intensity λ and µ such that λ > µ.

Let (Ti)i≥0 and (Si)i≥0 be the arrival times of (Nt)t≥0 and (Mt)t≥0 The first-hitting problem along

with its notation is illustrated in Figure 4.5. The double spending probability is given by the

t

n

S1
•
S2
•

S3
•

S4 = τz
•

T1
•

1−

2−

z

4−

Figure 4.5: Illustration of the double spending problem within a continuous time framework.

following result
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Theorem 7. The double spending probability is given by

P(τ0 <∞) =
(µ
λ

)x
.

Proof. Define the processes

Xt = x+Nt −Mt

and

Yt = x −Xt =Mt −Nt , t ≥ 0.

(Yt)t≥0 is a Lévy process such that Yt→−∞ because λ > µ. Recall that

exp(θYt − tκ(θ)), t ≥ 0,

is a martingale. We would like to find γ > 0 such that exp(γYt). Consider the equation

κ(θ) = logE
(
eθY1

)
= 0.

Tt is equivalent to

µeθ +λe−θ − (µ+λ) = 0,

which has two solutions: 0 and

γ = log
(
λ
µ

)
.

It follows from Proposition 6 that (eγYt )t≥0 is a martingale. We apply the optional stopping

theorem (that’s Theorem 6) to the process eγYt at t ∧ τ0. We have

E(eγY0 ) = 1,

and

E(eγYτ0∧t ) = E(eγYτ0 Iτ0<t) +E(eγYtIτ0≥t).

We are going to take the limit t→∞. Note that

τ0 = inf{t ≥ 0 ; x+Nt =Mt} = inf{t ≥ 0 ; Xt = 0} = inf{t ≥ 0 ; Yt = x}.

We deduce that Yτ0
= x and that eγYt < eγx on {τ0 ≥ t}. Applying the dominated convergence

theorem yields

E(eγYτ0∧t ) →
t→∞

eγxP(τ0 <∞).

The identity

E(eγY0 ) = E(eγYτ0∧t )

holds for any t including t→∞ which in turns leads to

1 = eγxP(τ0 <∞)⇔ P(τ0 <∞) =
(µ
λ

)x
.
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4.3.4 Double spending time

Just like in Section 4.2.2, we are interested in the time required to complete a double spending

attack. Accounting for the cost of electricity, we can approximate the operational cost per time

unit by

c = πW ·W · q,

where

• πW is the electricity cost

• W is the electricity consumed by the network

• q is the attacker’s hashpower

The double spending cost reduces to τz · c. the following result provides a formula for the p.d.f.

of τz.

Theorem 8. If (Nt)t≥0 is a Poisson process and (Mt)t≥0 is a renewal process then the p.d.f. of τz is

given by

fτ0
(t) = E

[
x

x+Nt
fSNt+x (t)

]
, for t ≥ 0, (4.8)

where S1,S2, . . . , denotes the arrival times of (Mt)t≥0.

Proof. The event {τ0 ∈ (t, t + dt)}, for t ≥ 0, corresponds to the exact time at which the double-

spending attack is successful as the malicious chain takes over the honest one. At time t = 0,

the honest chain is ahead by x ≥ 1 blocks. Assuming that later, at time t > 0, the honest miners

manage to add Nt = n ∈ N blocks to the chain then the malicious chain must be of length

M(t−) = n+ x − 1 at some time t− < t and jumps to the level n+ x exactly at t. Conditioning over

the values of {Nt , t ≥ 0} yields

{τ0 ∈ (t, t + dt)} =
+∞⋃
n=0

{τ0 ∈ (t, t + dt)} ∩ {Nt = n}. (4.9)

In the case where Nt = 0, the only requirement is that the xth jump of (Mt)t≥0 occurs at time t. It

then follows that

{τ0 ∈ (t, t + dt)} ∩ {Nt = 0} = {Sx ∈ (t, t + dt)} ∩ {Nt = 0}, (4.10)

and consequently

fτ0 |Nt (t|0) = fSx (t), t ≥ 0, (4.11)

where fτ0 |Nt (t|0) denotes the conditional p.d.f. of τ0 given that Nt = 0. On the set {Nt ≥ 1}, one

needs to make sure that {Mt , t ≥ 0} behaves properly by constraining its jump times so that it

does not reach Ns + x at any time s < t and performs the (n+ x)th jump at t. Hence, it holds that

{τ0 ∈ (t, t + dt)} ∩ {Nt ≥ 1} =
+∞⋃
n=1

n⋂
k=1

{Tk ≤ Sx+k−1} ∩ {Sx+n ∈ (t, t + dt)} ∩ {Nt = n}.
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Applying the law of total probability yields

P ({τ0 ∈ (t, t + dt)} ∩ {N (t) ≥ 1})

=
+∞∑
n=1

P

 n⋂
k=1

{Tk ≤ Sx+k−1} ∩ {Sx+n ∈ (t, t + dt)}
∣∣∣∣N (t) = n

P[N (t) = n]. (4.12)

In virtue of the order statistic property, the successive jump times (T1, . . . ,Tn) are distributed as

the order statistics (U1:n(0, t), . . . ,Un:n(0, t)) of a sample of n i.i.d. random variables uniformly

distributed on (0, t). The conditional probability in (4.12) may be rewritten as

P

 n⋂
k=1

{Uk:n(0, t) ≤ Sx+k−1} ∩ {Sx+n ∈ (t, t + dt)}


= P

 n⋂
k=1

{Uk:n(0,1) ≤ Sx+k−1/t} ∩ {Sx+n ∈ (t, t + dt)}


= P

 n⋂
k=1

{Uk:n(0,1) ≤ Sx+k−1/t}
∣∣∣Sx+n ∈ (t, t + dt)

P[Sx+n ∈ (t, t + dt)]

= E

{
(−1)nGn[0

∣∣∣Sx/t, . . . ,Sx+n−1/t]
∣∣∣Sx+n ∈ (t, t + dt)

}
P[Sx+n ∈ (t, t + dt)],

= (−1/t)nE
{
Gn[0

∣∣∣Sx, . . . ,Sx+n−1]
∣∣∣Sx+n ∈ (t, t + dt)

}
P[Sx+n ∈ (t, t + dt)],

(4.13)

where (Gn(.|.))n≥0 correspond to the sequence of A-G polynomials as defined in Section 4.4. The

last equation in (4.13) follows from using the first identity of Proposition 9. Inserting (4.13) into

(4.12) and letting dt be small enough yields

fτ0 |N (t)≥1(t) =
+∞∑
n=1

(−1/t)nE
{
Gn[0

∣∣∣Sx, . . . ,Sx+n−1]
∣∣∣Sx+n = t

}
× fSx+n

(t)P[N (t) = n]. (4.14)

We further work on the AG polynomials to simplify the above expressions. We have that

E

{
Gn(0

∣∣∣Sx, . . . ,Sx+n−1)|Sx+n = t
}

= E {Gn(−Sx |0, . . . ,Sx+n−1 − Sx)|Sx+n = t}

= E {E [Gn(−Sx |0, . . . ,Sx+n−1 − Sx)|Sx+n − Sx,Sx+n]|Sx+n = t}

= E

{
(−Sx)(−Sx − Sn+x + Sx)n−1|Sx+n = t

}
= (−1)nE

{
SxS

n−1
n+x |Sx+n = t

}
= (−1)ntn−1 x

x+n
t = (−t)n x

x+n
(4.15)

Inserting (4.15) into (4.14) yields

fτ0 |Nt≥1(t) =
+∞∑
n=1

x
x+n

fSx+n
(t)P(Nt = n)

The final step consists in adding the case Nt = 0 to the sum, therefore writing

fτ0
(t) =

+∞∑
n=0

x
x+n

fSx+n
(t)P(Nt = n)

which is equivalent to the announced result (4.8).
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Exercise 2. Assume that (Mt)t≥0 is a Poisson process with intensity µ, compute

P(τ0 <∞) =
∫ ∞

0
fτ0

(t)dt =
(µ
λ

)x
.

See Goffard [2019, Example 1] for the derivation. It is easier to verify the formula using python.

Remark 4. Just like in the random walk framework of Section 4.2, the number z is actually a random

variable defined as

Z = (α −MTα )+,

where Tα is the arrival time of the αth block in the main branch of the blockchain. If (Mt)t≥0 is a

Poisson process with intensity µ then MTα ) is mixed Poisson distributed with parameter µ · Tα . We

have that

P(MTα =m) =
∫ ∞

0

e−µt(µt)m

m!
e−λttα−1λα

(α − 1)
dt

=
µmλα

m!(α − 1)!

∫ ∞
0

e−t(µ+λ)tm+α−1dt

=
(
m+α − 1

m

)(
λ

λ+µ

)α (
µ

λ+µ

)m
.

The number of blocks found by the attacker until the vendor’s transaction gets α confirmations is

governed by a negative binomial distribution.

For further results on the distribution of τ0 with different set of assumptions, the reader is

referred to Goffard [2019].

4.4 Appendix: Appell and Abel-Gontcharov polynomials

Let U = {ui , i ≥ 1} be a non-decreasing sequence of real numbers. To U is attached a (unique)

family of Appell polynomials of degree n in x, {An(x|U ), n ≥ 0} defined as follows.

Definition 10. Starting with A0(x|U ) = 1, the An(x|U )’s satisfy the differential equations

A
(1)
n (x|U ) = nAn−1(x|U ), (4.16)

with the border conditions

An(un|U ) = 0, n ≥ 1. (4.17)

So, each An has the integral representation

An(x|U ) = n!
∫ x

un

[∫ yn

un−1

dyn−1 . . .

∫ y1

u1

dy1

]
dyn, n ≥ 1. (4.18)

In parallel, to U is attached a (unique) family of Abel-Gontcharov (A-G) polynomials of

degree n in x, {Gn(x|U ), n ≥ 0}.

Definition 11. Starting with G0(x|U ) = 1, the Gn(x|U )’s satisfy the differential equations

G
(1)
n (x|U ) = nGn−1(x|EU ), (4.19)
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where EU is the shifted family {ui+1, i ≥ 1}, and with the border conditions

Gn(u1|U ) = 0, n ≥ 1. (4.20)

So, each Gn has the integral representation

Gn(x|U ) = n!
∫ x

u1

[∫ y1

u2

dy2 . . .

∫ yn−1

un

dyn

]
dy1, n ≥ 1. (4.21)

The Appell and A-G polynomials are closely related through the identity

Gn(x|u1, . . . ,un) = An(x|un, . . . ,u1), n ≥ 1. (4.22)

The two families (i.e. for all n ≥ 0), however, are distinct and enjoy different properties. From

(4.18) and (4.21), it is clear that the polynomials An and Gn can be interpreted in terms of the

joint distribution of the vector (U1:n, . . . ,Un:n).

Proposition 7. For 0 ≤ u1 ≤ . . . ≤ un ≤ x ≤ 1,

P [U(1) > u1, . . . ,U(n) > un and U(n) ≤ x] = An(x|u1, . . . ,un), n ≥ 1. (4.23)

For 0 ≤ x ≤ u1 ≤ . . . ≤ un ≤ 1,

P [U(1) ≤ u1, . . . ,U(n) ≤ un and U(1) > x] = (−1)nGn(x|u1, . . . ,un), n ≥ 1. (4.24)

The representations (4.23) and (4.24) will play a key role for solving first-hitting problem

that involve Poisson processes. Numerically, it will be necessary to evaluate some special values

of the polynomials. To this end, it is convenient to use the following recusive relations.

Proposition 8. The Appell polynomials are computed through the expansion

An(x|U ) =
n∑
k=0

(
n
k

)
An−k(0|U )xk , n ≥ 1, (4.25)

where the An(0|U )’s are obtained recursively from

An(0|U ) = −
n∑
k=1

(
n
k

)
An−k(0|U )ukn, n ≥ 1. (4.26)

The A-G polynomials are computed through the recursion

Gn(x|U ) = xn −
n−1∑
k=0

(
n
k

)
un−kk+1Gk(x|U ), n ≥ 1. (4.27)

Proof. The Maclaurin expansion of An(x|U ) gives (4.25) as

An(x|U ) =
n∑
k=0

A
(k)
n (0|U )
k!

xk =
n∑
k=0

(
n
k

)
An−k(0|U )xk .

Evaluation at x = un then provides (4.26). Regarding (4.27), first note that

G
(k)
n (uk+1|U ) =


1, if k = n,

0, otherwise.
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Any polynomials R(x) of degree n can therefore be written as

R(x) =
n∑
k=0

R(k)(uk+1)
k!

Gk(x|U ).

By expanding xn one gets (4.27).

Hereafter are a couple of useful properties

Proposition 9. 1. For any a,b ∈R, it holds that

An(x|a+ bU ) = bnAn ((x − a)/b |U ) , n ≥ 1, (4.28)

with the same identity for Gn.

2. We have

An(x|1, . . . ,n) = xn−1(x −n), (4.29)

Gn(x|0, . . . ,n− 1) = x(x −n)n−1. (4.30)

3. Let {Xn , n ≥ 1} be a sequence of i.i.d. nonnegative random variables, of partial sums Sn =∑n
k=1Xk with S0 = 0. Then, for n ≥ 1,

E [An(x|S1, . . . ,Sn)|Sn] = xn−1(x − Sn), (4.31)

E [Gn(x|S0, . . . ,Sn−1)|Sn] = x(x − Sn)n−1. (4.32)

Proof. 1. Let us use induction on n ≥ 1. Take n = 1, we have

A1(x|a+ bu1) =
∫ x

a+bu1

A′1(y|a+ bu1)dy = x − a− bu1

and

A1(x|u1) = x −u1.

The property holds for n = 1. Assume that it holds true for some n and consider n+ 1. We

have

An+1(x|a+ bU ) =
∫ x

a+bun+1

A′n+1(y|a+ bU )dy

=
∫ x

a+bun+1

nAn(y|a+ bU )dy

= bn
∫ x

a+bun+1

nAn

(y − a
b

∣∣∣∣U)
dy

= bn+1n

∫ x−a
b

un+1

An

(
z
∣∣∣∣U)

dy

= bn+1
∫ x−a

b

un+1

A′n+1

(
z
∣∣∣∣U)

dy

= bn+1An+1

(x − a
b

∣∣∣∣U)
,

so the property holds for n+ 1. No need to do the job for the Gn(.|U )’s thanks to (4.22).
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2. Again induction on n ≥ 1. Take n = 1, we have

A1(x|1) = x − 1

Assume that the result holds true for some n and consider n+ 1. We have

An+1(x|1, . . . ,n,n+ 1) =
∫ x

n+1
A′n+1(y|1,2, . . . ,n+ 1)dy

= (n+ 1)
∫ x

n+1
An(y|1,2, . . . ,n)dy

= (n+ 1)
∫ x

n+1
yn−1(y −n)dy

= xn[x − (n+ 1)]

For identity (4.30), write

Gn(x|0, . . . ,n− 1) = Gn(x −n| −n, . . . ,−1)

= (−1)nGn(n− x|n, . . . ,1)

= (−1)nAn(n− x|1, . . . ,n)

= (−1)n(n− x)n−1(−x)

= x(x −n)n−1.

3. Again induction on n ≥ 1. Take n = 1, we have

E[A1(x|S1)|S1] = x − S1

Assume that the result holds true for some n and consider n+ 1. We have

E [An+1(x|S1, . . . ,Sn,Sn+1)|Sn+1] = E

[∫ x

Sn+1

A′n+1(y|S1, . . . ,Sn,Sn+1)dy|Sn+1

]
= (n+ 1)E

[∫ x

Sn+1

An(y|S1, . . . ,Sn)dy|Sn+1

]
= (n+ 1)

∫ x

Sn+1

E [An(y|S1, . . . ,Sn)|Sn+1]dy (Fubini)

= (n+ 1)
∫ x

Sn+1

E {E [An(y|S1, . . . ,Sn)|Sn,Sn+1] |Sn+1}dy

= (n+ 1)
∫ x

Sn+1

E {E [An(y|S1, . . . ,Sn)|Sn] |Sn+1}dy

= (n+ 1)
∫ x

Sn+1

E

[
yn−1(y − Sn)|Sn+1

]
dy

= (n+ 1)
∫ x

Sn+1

yn − n
n+ 1

Sn+1y
n−1dy

= xn(x − Sn+1)
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For identity (4.32), write

E [Gn(x|S0, . . . ,Sn−1)|Sn] = E [Gn(x − Sn|S0 − Sn, . . . ,Sn−1 − Sn)|Sn]

= (−1)nE [Gn(Sn − x|Sn, . . . ,Sn − Sn−1)|Sn]

= (−1)nE [An(Sn − x|Sn − Sn−1, . . . ,Sn)|Sn]

= (−1)n(Sn − x − Sn)(Sn − x)n−1

= x(x − Sn)n−1.
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Chapter 5

Decentralization of blockchain

system

Decentralization represents the fairness of the distribution of the accounting right of the nodes

in the blockchain network. The consensus protocol must be designed so that the decision power

does not eventually concentrate on a few nodes leading to a centralized system. In leader

based consensus protocols, each peer is associated to a probability of being chosen. Measuring

decentrality then reduces to computing the entropy of the probability distribution of the random

variable equal to the peer selected

5.1 Decentralization in PoS

The Proof-of-Stake protocol is a leader based consensus protocol that appoints a block validator

depending on how many cryptocoins he owned which corresponds to its stake. In its most basic

form a coins is drawn at random, the owner of that coin appends a block and collect a reward.

The stake of each peers is governed by stochastic processes with reinforcement similar to that

studied in the Polya’s urn problem. In Polya’s urn, there are balls of various colors. At each time

step a ball is drawn, the ball is then replaced in the urn together with a ball of the same color.

The coins are the balls and the color is the peer that owns the balls. This analogy has been used

to study the decentralization

Let the network be of size p and denote by r the reward collected at each round n ∈N by the

lucky node x ∈ {1, . . . ,p} = E. At time n = 0, each peer x ∈ E has Z(x)
0 coins so that the total number

of coins is Z0 =
∑
x∈E Z

(x)
0 . The number of coins owned by each peers evolve over time as

Z
(x)
n = Z(x)

0 + r
n∑
k=1

I
A

(x)
k

and Zn =
∑
x∈E

Z
(x)
n = Z0 +nr,

where A(x)
n is the event that a coin own by peer x ∈ E is drawn at time n ∈N. Let (W (x)

n )n≥0 be
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the proportion of coins owned by peer x at time n, given by

W
(x)
n =

Z
(x)
n

Zn
.

Let Fn = σ ({Z(x)
k , x ∈ E,k ≤ n}). Note that

P

(
A

(x)
n |Fn−1

)
=W (x)

n−1.

5.2 Average stake owned by each peer

The following result provide the average behaviour of the share of coins owned by each peer.

Proposition 10.

E

(
W

(x)
n

)
=
Z

(x)
0
Z0

, x ∈ E ,n ≥ 0.

Proof. We show that (W (x)
n )n≥0 is a martingale. We have that

E

[
W

(x)
n |Fn−1

]
= E

Z
(x)
n−1 + rI

A
(x)
n

Z0 + rn

∣∣∣∣Fn−1


=

Z
(x)
n−1

Z0 + rn
+
rW x

n−1
Z0 + rn

=
W

(x)
n−1[Z0 + r(n− 1)]

Z0 + rn
+
rW x

n−1
Z0 + rn

= W x
n−1.

It then follows that

E

(
W

(x)
n

)
=
Z

(x)
0
Z0

, x ∈ E ,n ≥ 0.

The long term average of the stake of each peer is stable, we focus on their asymptotic

distribution in the following section.

5.3 Asymptotic distribution of the stakes

To go beyond the mean and study the distribution of the stake of the peers, we have to consider

the case r = 1. We can then show that the joint distribution of (W (1)
∞ , . . . ,W

(p)
∞ ) is the Dirichlet

one.

Definition 12. A random vector (W1, . . . ,Wp) has a Dirichlet distribution Dir(α1, . . . ,αp) if it has a

joint p.d.f. given by

f (w1, . . . ,wp;α1, . . . ,αp) =
1

B(α)

p∏
i=1

wαi−1
i , (5.1)
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for α1, . . . ,αp > 0, 0 < w1, . . . ,wp < 1 and
∑p
i=1wi = 1, where

B(α) =

∏p
i=1 Γ (αi)

Γ (
∑p
i=1αi)

,

and Γ (α) =
∫∞

0 e−xxα−1dx is the gamma function.

A Dirichlet random vector can be generated by independent Gamma random variables. Recall

that X ∼ Gamma(α,β) if X has p.d.f.

fX(x) =


e−βxxα−1βα

Γ (αi )
, x > 0

0, otherwise.
(5.2)

Proposition 11. Let Xi ∼ Gamma(αi ,1) for i = 1, . . . ,p be independent random variables then X1∑p
i=1Xi

, . . . ,
Xp∑p
i=1Xi

 ∼Dir(α1, . . . ,αp)

Proof. Note that because (w1, . . . ,wp) belongs to the p − 1 simplex then the p.d.f. (5.1) may be

rewritten as

f (w1, . . . ,wp;α1, . . . ,αp) =
1

B(α)

p−1∏
i=1

wαi−1
i

1−
p−1∑
i=1

wi


αp−1

,

which means that we are only interested in the distribution of the vector
(
W1, . . . ,Wp−1

)
=(

X1/
∑p
i=1Xi , . . . ,Xp−1/

∑p
i=1Xi

)
. Let g : Rp 7→R

+ be measurable and bounded and consider

E

g  X1∑p
i=1Xi

, . . . ,
Xp−1∑p
i=1Xi


=

∫
R
p

+

g

 x1∑p
i=1 xi

, . . . ,
xp−1∑p
i=1 xi

 e−
∑p
i xi

∏p
i=1 x

αi−1
i∏p

i=1 Γ (αi)
dλ(x1, . . . ,xp)

We use the change of variable

Φ : (w1, . . . ,wp−1,v) 7→

vw1, . . . , vwp−1,v

1−
p−1∑
i=1

wi


 =

x1, . . . ,xp−1,

p∑
i=1

xi


minding the change in the integration domain as

Φ(∆p−1 ×R+) = R
p
+,

∆p−1 is the p − 1 simplex and the Jacobian
∣∣∣∣ dΦ
d(w1,...,wp−1,v)

∣∣∣∣ = vp−1, we get

E

g  X1∑p
i=1Xi

, . . . ,
Xp−1∑p
i=1Xi


=

∫
∆p−1

∫
R+

g
(
w1, . . . ,wp−1

) e−v∏p−1
i=1 w

αi−1
i

(
1−

∑p−1
i=1 wi

)αp−1
v
∑p−1
i=1 αi−1∏p

i=1 Γ (αi)
dλ(w1, . . . ,wp−1,v)

=
∫
∆p−1

g
(
w1, . . . ,wp−1

) Γ (∑p
i=1αi

)
∏p
i=1 Γ (αi)

p−1∏
i=1

wαi−1
i

1−
p−1∑
i=1

wi


αp−1

dλ(w1, . . . ,wp−1).
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To show that the stochastic process (W (1)
n , . . . ,W

(p)
n ) has a Dirichlet limiting distribution we

need to introduce a counting process known as Yule process.

Definition 13. A Yule process (Yt)t≥0 is a pure birth process with linear birth rate given as

P(Yt+h = y + 1|Yt = y) = yh+ o(h).

The Yule process models the population of some particle over time, assuming that there is

one particle at time 0, so Y0 = 1 this particle will split in two after some exponential time and

this going on and on, see the illustration on Figure 5.1.

Exp(1)

Exp(1)

Exp(1)

Exp(1)

t

Yt = 4

Figure 5.1: Yule tree

Before moving forward, two remarks.

Remark 5. If we have Y0 = y0 particles at the initial state, then it is like starting y0 independent

copies of the Yule process with one particle and summing up at time t the number of particles of all the

Yule processes. Namely, let (Yt)t≥0 be a Yule process such that Y0 = y0, then

Yt =
y0∑
i=1

Y
(i)
t ,

where the Y (i)
t ’s are independent Yule processes such that Y (i)

t = 1 for i = 1, . . . , y0.

Remark 6. The Yule process (Yt)t≥0 is strong Markov in the sense that for any stopping time τ , the

stopped process

Ỹt = Yτ+t , t ≥ 0
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is again a Yule process such that Ỹ0 = Yτ .

Proposition 12. Let (Yt)t≥0 be a Yule process such that Y0 = 1 then

P(Yt = y) =
(
1− e−t

)y−1
e−t .

Proof. The inter-arrival times (∆Tn )n≥1 of the Yule process are independent random variable such

that ∆Tn = Exp(n). If we have n particles at some time t ≥ 0, that’s n exponential Exp(1) competing

and a new particle appears as soon as one of them ring. We then have ∆Tn = min(X1, . . . ,Xn),

where X1, . . . ,Xn
i.i.d.∼ Exp(1) and so ∆Tn ∼ Exp(n). The arrival time of the nth particles is given by

Tn =
n−1∑
k=1

∆Tk , n ≥ 2.

By induction on n ≥ 2, we can show that

P(Tn ≤ t) =
(
1− e−t

)n−1
.

We further deduce that

P(Yt = y) = P(Yt > y)−P(Yt > y + 1) = P(Ty ≤ t)−P(Ty+1 ≤ t) =
(
1− e−t

)y−1
e−t

Theorem 9. We have that

e−tYt
D−→ Exp(1), as t→∞.

Proof. Let us show that
(
e−tYt

)
t≥0

is a martingale. We have that, for s ≤ t,

E(e−tYt |Fs) = e−tE(Yt |Fs) = e−tYse
t−s = e−sYs.

Because of the martingale convergence theorem, we know that
(
e−tYt

)
t≥0

has a limiting distribu-

tion. Consider the Laplace transform

E

(
e−θe

−tYt
)

=
e−θe−te−t

1− e−θe−t (1− e−t)
=

1

et
(
eθe−1 − 1

)
+ 1
→ 1

1 +θ
, as t→∞.

which coincides with that of an exponential random variable Exp(1).

We finally link the asymptotic behavior of the Yule processes to our initial question about

the asymptotic distributions of the stakes.

Theorem 10. We have that (
W

(1)
∞ , . . . ,W

(p)
∞

)
∼Dir

(
Z

(1)
0 , . . . ,Z

(p)
0

)
.

Proof. Assume that each coin owned at time n = 0 is like the initial particle of a Yule process.

That’s Z0 Yule processes (Y i,jt )t≥0 for i = 1, . . . ,Z(j)
0 and j = 1, . . . ,p. Each time step n corresponds
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to the jump of one of the Yule processes τn. The number of coins owned by peer j = 1, . . . ,p is

then

Z
(j)
n =

Z
(j)
0∑
i=1

Y
i,j
τn ,

we have τn→∞ as n→∞ and therefore

e−τnZ
(j)
n =

Z
(j)
0∑
i=1

Y
i,j
τn e
−τn D−→ Gamma

(
Z

(j)
0 ,1

)
, as n→∞

Finally

(
W

(1)
n , . . . ,W

(p)
n

)
=

 e−τnZ
(1)
n∑p

j=1 e
−τnZ

(j)
n

, . . . ,
e−τnZ

(p)
n∑p

j=1 e
−τnZ

(j)
n

 D−→Dir(Z(1)
0 , . . . ,Z

(p)
0 ), as n→∞.

Remark 7. One can take a shorter road to show the above result. Let (Xn)n≥1 be the color of the ball

drawn during the nth round. We have that

P(X1 = x) =
Z

(x)
0
Z0

(5.3)

and

P(Xn+1 = x) =
Z

(x)
0 +

∑n
i=1 δXi (x)

Z0 +n
=
Z

(x)
0 +λn(x)
Z0 +n

=mn(x) (5.4)

where δXi denotes the Dirac measure at Xi . A sequence that satisfies (5.3) and (5.4) is said to be a

Polya sequence with parameter Nx, x ∈ E.

Lemma 3. The following statements are equivalent:

(i) X1,X2, . . . , is a Polya sequence

(ii) µ∗ ∼Dir(Nx,x ∈ E) and X1,X2, . . . given µ∗ are i.i.d. as µ∗

Consider the event An = {X1 = x1, . . . ,Xn = xn}. Induction on n allows us to show that (i) is

equivalent to

P(An) =

∏
x∈E

(
Z

(x)
0

)[λn(x)]

Z
[n]
0

, (5.5)

where λn(x) is the number of i’s in 1, . . . ,n for which xi = x and a[k] = a(a + 1) . . . (a + k − 1). Now

assume that (ii) holds true, then

P(An|µ∗) =
∏
x∈E

µ∗(x)λn(x),

recall that µ∗ is a random vector, indexed on E, We denote by µ∗(x) the component associated with

x ∈ E. The law of total probability then yields

P(An) = E

∏
x∈E

µ∗(x)λn(x)

 , (5.6)
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which is the same as (5.5). Applying the lemma together with the law of large number yields

n−1
n∑
i=1

δXi (x)→ µ∗(x) as n→∞.

and then mn(x)→ µ∗(x). This proof is taken from Blackwell and MacQueen [1973].

The asymptotic distribution of the stakes among the peers is a Dirichlet random vector

denoted by µ∗ which may be considered as a probability distribution over the set of peers.

Decentralization is achieved when the weights do not concentrate around a few nodes. The most

desirable situation corresponds to all the peers being equally likely to be selected. It would

corresponds to a uniform distribution over the set of peers which would maximizes the Shannon

entropy. For µ∗ ∼Dir(Z(x)
0 ), we have

H(µ∗) = −E

∑
x

µ∗(x) ln[µ∗(x)]

 = −
∑
x

Z0

Z
(x)
0

[
ψ(Z(x)

0 + 1)−ψ(Z0 + 1)
]
,

where ψ(x) = d
dx ln[Γ (x)] is the digamma function, to be compared to ln(p).
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Chapter 6

Efficiency of blockchain systems

6.1 A queueing model with bulk service

Blockchain users send transactions to the network of validators according to some rate λ.

These transactions enter a queue of pending transactions. The validators select a subset of b

transactions to be recorded in the next block. The block is built by a leader elected via a consensus

protocol. The block is then communicated to the other validators and the b transactions exit

the queue. We assume that building a block takes some exponentially distributed time with

mean µ. What we just described is exactly a single server with bulk service queueing system,

described for instance in Bailey [1954] and Chaudhry and Templeton [1981] with exponential

arrival times, that processes k items at a time, with an exponential service time. This a M/Mb/1

queue in Kendall’s notation summarized in Figure 6.1. One specificity of this queue is that the

λ

µ

µ

Figure 6.1: Blockchain queue

server is always busy. Our goal is to assess the efficiency which is characterized by

• Throughputs: Number of transaction being processed per time unit
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• Latency: Average transaction confirmation time

This can be done by studying the distribution of the number of pending transaction in the queue

over the long run. A stationary state can only be reached if

µ · b > λ. (6.1)

Denote by N q the length of the queue upon stationarity, The following result holds.

Theorem 11. Assume that (6.1) holds then N q is geometrically distributed

P(N q = n) = (1− p) · pn, n ≥ 0

where p = 1/z∗ and z∗ is the only root of

−λ
µ
zb+1 + zb

(
λ
µ

+ 1
)
− 1,

such that |z∗|>1.

Proof. Let N q
t be the number of transactions in the queue at time t ≥ 0 and Xt the time elapsed

since the last block was found. Further define

Pn(x, t)dx = P[N q
t = n,Xt ∈ (x,x+ dx)]

If λ < µ · b holds then the process admits a limiting distribution given by

lim
t→∞

Pn(x, t) = Pn(x).

Adding the variable Xt is a known trick going back to Cox [1955], it allows us to make the

process (N q
t )t≥0 Markovian (useful if transaction arrival process or the block arrival process are

not Poisson processes) but also to study the process as time goes to infinity while keeping a

temporal marker (last arrival time). We aim at finding the distribution of the queue length upon

stationarity

P(N q = n) := αn =
∫ ∞

0
Pn(x)dx, n ≥ 0. (6.2)

Consider the possible transitions over a small time lapse h during which no block is being

generated. Over this time interval, either

• no transactions arrives

• one transaction arrives

We have for n ≥ 1

Pn(x+ h) = e−µh
[
e−λhPn(x) +λhe−λhPn−1(x)

]
.

Differentiating with respect to h and letting h→ 0 leads to

P ′n(x) = −(λ+µ)Pn(x) +λPn−1(x), n ≥ 1. (6.3)
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Similarly for n = 0, we have

P ′0(x) = −(λ+µ)P0(x). (6.4)

We denote by

ξ(x)dx = P(x ≤ X < x+ dx|X ≥ x) = µdx,

the hazard function of the block arrival time (constant as it is exponentially distributed). The

system of differential equations (6.3), (6.4) admits boundary conditions at x = 0 with
Pn(0) =

∫ +∞
0 Pn+b(x)ξ(x)dx = µαn+b, n ≥ 1,

P0(0) = µ
∑b
n=0αn, n = 0, . . . , b

(6.5)

Define the probability generating function of N q at some elapsed service time x ≥ 0 as

G(z;x) =
∞∑
n=0

Pn(x)zn.

By differentiating with respect to x, we get (using (6.3) and (6.4))

∂
∂x
G(z;x) = − [λ(1− z) +µ]G(z;x),

and therefore

G(z;x) = G(z;0)exp
{
− [λ(1− z) +µ]x

}
.

We get the probability generating function of N q by integrating over x as

G(z) =
G(z;0)

λ(1− z) +µ
. (6.6)

Using the boundary conditions (6.5), we write

G(z;0) =
∞∑
n=0

Pn(0)zn

= P0(0) +
+∞∑
n=1

Pn(0)zn

= µ
b∑
n=0

αn +µ
+∞∑
n=1

αn+bz
n

= µ
b∑
n=0

αn +µz−b
G(z)−

b∑
n=0

αnz
n

 (6.7)

Replacing the left hand side of (6.7) by (6.6), multiplying on both side by zb and rearranging

yields

G(z)
M(z)

[zb −M(z)] =
b−1∑
n=0

αn(zb − zn), (6.8)

where M(z) = µ/(λ(1− z) +µ). Using Rouche’s theorem, we find that both side of the equation

shares b zeros inside the circle C = {z ∈C ; |z| < 1 + ϵ} for some epsilon.

Lemma 4. Let C ⊂ C and f and g two holomorphic functions on C. Let ∂C be the contour of C. If

|f (z)− g(z)| < |g(z)|, ∀z ∈ ∂C

then Zf − Pf = Zg − Pg , where Zf , Pf , Zg , and Pg are the number of zeros and poles of f and g

respectively.
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We have ∂C = {z ∈C ; |z| = 1 + ϵ}. The left hand side can be rewritten as

G(z)
[
−λ
µ
zb+1 +

(
1 +

λ
µ

)
zb − 1

]
.

Define f (z) = −λµ z
b+1 +

(
1 + λ

µ

)
zb − 1 and g(z) =

(
1 + λ

µ

)
zb. We have

|f (z)− g(z)| = | − λ
µ
zb+1 − 1| ≤ λ

µ
(1 + ϵ)b+1 + 1 <

(
1 +

λ
µ

)
(1 + ϵ)b = |g(z)|, with ϵ→ 0.

Regarding the right hand side, define f (z) =
∑b−1
n=0αn(zb − zn) and g(z) =

∑b−1
n=0αnz

b. We have

|f (z)− g(z)| < |
b−1∑
n=0

αnz
n| ≤

b−1∑
n=0

αn(1 + ϵ)n < (1 + ϵ)b
b−1∑
n=0

αn = |g(z)|.

We deduce from Rouche’s theorem that both sides have b share roots inside C. Note that one of

them is 1, and we denote by zk , k = 1, . . . , b − 1 the remaining b − 1 roots. Given the polynomial

form of the right hand side of (6.8), the fundamental theorem of algebra indicates that the

number of zero is b. Given the left hand side

G(z)
[
−λ
µ
zb+1 +

(
1 +

λ
µ

)
zb − 1

]
.

we deduce that there is one zeros outside C, we can further show that it is a real number z∗.

Multiplying both side of (6.8) by (z − 1)
∏b−1
k=1(z − zk), and using G(1) = 1 yields

G(z) =
1− z∗

z − z∗
.

N q is then a geometric random variable with parameter p = 1
z∗ .

The result above can be found in Bailey [1954]. The application to blockchain under more

general assumptions over the block discovery time is given in Kawase and Kasahara [2017].

6.2 Latency and throughputs computation

The practical computation of latency and throughputs then follow from a standard result in

queueing, known as Little’s law, see Little [1961].

Theorem 12. Consider a stationary queueing system and denote by

• 1/λ the mean of the unit inter-arrival times

• L be the mean number of units in the system

• W be the mean time spent by units in the system

We have

L = λ ·W

• Latency is the confirmation time of a transaction

Latency =W =
E(N q)
λ

=
p

(1− p)λ
.
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• Throughput is the number of transaction confirmed per time unit

Throughput = µE(N q
IN q≤b + bIN q>b) = µ

b∑
n=0

n(1− p)pn + bpb+1.

Avenue for future research includes

• the inclusion of priority consideration, accounting for the transaction fee, see Kawase et al.

[2020]

• Refine the hypothesis of the queueing system to better adapt to the different consensus

protocol, see Li et al. [2018] and Li et al. [2019].
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